首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reviews recent efforts to provide the scientific and technological basis for cost-effective and highly efficient thin film solar modules based on amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon. Textured ZnO:Al films prepared by sputtering and wet chemical etching were applied to design optimised light-trapping schemes. Necessary prerequisite was the detailed knowledge of the relationship between film growth, structural properties and surface morphology obtained after etching. High rate deposition using plasma enhanced chemical vapour deposition at 13.56 MHz plasma excitation frequency was developed for μc-Si:H solar cells yielding efficiencies of 8.1% and 7.5% at deposition rates of 5 and 9 Å/s, respectively. These μc-Si:H solar cells were successfully up-scaled to a substrate area of 30×30 cm2 and applied in a-Si:H/μc-Si:H tandem cells showing initial test cell efficiencies up to 11.9%.  相似文献   

2.
Processing options for addressing critical issues associated with the fabrication of thin film CdTe solar cells are presented, including window and buffer layer processing, post-deposition treatment, and formation of stable low resistance contacts. The paper contains fundamental data, engineering relationships and device results. Chemical surface deposited CdS and Cd1−xZnxS films are employed as the n-type heteropartner window layers. Maintaining junction quality with ultra-thin window layers is facilitated by use of a high resistance oxide buffer layer, such as SnO2, In2O3 or Ga2O3, between the heteropartner and the transparent conductive oxide. Thermal annealing of the CdTe/CdS heterostructure in the presence of CdCl2 and O2 shifts the chemical equilibrium on the surface of the absorber layer, which influences the bulk electrical properties. Aspects of back contacting CdTe/CdS devices, including etching, Cu application, contact annealing, back contact chemistry and secondary contacts, are discussed. Two commonly employed etches used to produce a Te-rich layer, nitric acid/phosphoric acid mixtures and Br2/methanol are compared, including the nature and stability of the final treated CdTe surface. The diagnostic abilities of the surface sensitive VASE and GIXRD techniques are highlighted. Various methods of Cu delivery are discussed with consideration to; reaction with Te, processing simplicity, processing time and possible industrial scale-up. Some aspects of back contact stability are presented, including discussion of apparent robust back contacts, which contain a thick Te component.  相似文献   

3.
Chalcopyrite thin film solar cells by electrodeposition   总被引:3,自引:0,他引:3  
This paper reviews the state of the art in using electrodeposition to prepare chalcopyrite absorber layers in thin film solar cells. Most of the studies deal with the direct preparation of Cu(In,Ga)Se2 films, and show that the introduction of gallium in the films is now becoming possible from single bath containing all the elements. Electrodeposition can also be used to form precursor films with stacked layer structures, of pure elements or of combinations with binary or even ternary films. Thermal annealing treatments are of dramatic importance to provide suitable electronic quality to the layers. They are often done in the presence of a chalcogen (selenium or sulfur) over pressure and there is a tendency to use rapid thermal processes. Less studies are devoted to complete solar cell formation. Significant progresses have been made in the recent period with several groups achieving cell efficiencies around 8–10% on different substrates. A record efficiency of 11.3% is reported for a cell with an absorber presenting a band gap of 1.47 eV. First results on the manufacturability of the corresponding process to large areas are presented.  相似文献   

4.
Abstract

Today’s thin film photovoltaic technologies comprising CuInS2 (CIS), CuInGaSe2 (CIGS) and CdTe rely on elements that are costly and rare in the earth’s crust (e.g. In, Ga, Te) and are toxic (e.g. Cd). Hence, in future cost reduction and increased production, using abundantly available non-toxic elements, seem to be the main issues. Cu2ZnSnS4 (CZTS), having the kesterite structure, is one of the most promising absorber layer candidates for low cost thin film solar cells, because of its suitable direct band gap between 1·4 and 1·5 eV and large absorption coefficient, over 104 cm?1. Also it is composed of earth abundant and non-toxic elements, promising price reductions in future. Recently, research in this area has gained momentum due to the desirability of producing Ga, In and Cd free absorber layers and the potential to obtain new insights. Hence, a review of recent literature is urgently warranted. The CZTS progress and present status of CZTS thin film solar cells has been reviewed, with the hope of identifying new paths for productive research.  相似文献   

5.
CdTe thin film solar cells: device and technology issues   总被引:1,自引:0,他引:1  
Polycrystalline thin film CdTe continues to be a leading material for the development of cost effective and reliable photovoltaics. Thin film CdTe solar cells and modules are typically heterojunctions with CdS being the n-type partner, or window layer. The preferred configuration for CdTe solar cells is the superstrate structure. The cadmium chloride heat treatment, the back contact formation process, and the utilization of resistive, buffer layers in tandem with a thin cadmium sulfide window layer, are important areas of research in thin film CdTe solar cells. This paper reviews work on CdTe thin film solar cells sponsored by the National Renewable Energy Laboratory. Results for a vapor chloride heat treatment with high throughput characteristics, a dry back contact process, and a comparative study of resistive buffer layers and their effect on the performance of CdTe solar cells are presented.  相似文献   

6.
铜铟硒多晶薄膜太阳电池的制备技术   总被引:5,自引:0,他引:5  
简述了铜铟硒多晶薄膜太阳电池的研究现状,讨论了其制备技术及其特点,给出了进一步研究和要解决的现存问题。  相似文献   

7.
Surface plasmon enhanced GaAs thin film solar cells   总被引:1,自引:0,他引:1  
As a new method to improve the light trapping in solar cells, surface plasmon resonance (SPR) has attracted considerable attention because of its unique characteristics. Several studies have been reported on the photocurrent improvement of Si solar cells by surface plasmons, while little research has been done on III-V solar cells. In this work, we performed a systematic study of SPR on GaAs thin film solar cells with different sizes of Ag nanoparticles on the surface. The nanoparticles were fabricated by annealing E-beam evaporated Ag films in a N2 atmosphere. It was found that the surface plasmon resonance wavelength does not undergo a simple red-shift with increasing metal thickness. It depends on the shape of the metal nanoparticles and the interparticle spacing. It is necessary to optimize the particle size to obtain an optimum enhancement throughout the visible spectrum for solar cells. We found that the optimum thickness of the Ag film was 6 nm under our experimental conditions. Furthermore, from the calculation based on the external quantum efficiency data, the short circuit current density of a GaAs solar cell with 6 nm Ag film after annealing was increased by 14.2% over that of the untreated solar cell.  相似文献   

8.
V.V. Brus 《Solar Energy》2012,86(5):1600-1604
A new technique is proposed for the calculation of the width W of space charge region and consequently the concentration of uncompensated acceptors NAND, which is based on the open-circuit analysis of thin film heterojunction solar cells illuminated by monochromatic light with the wavelength within photosensitivity region. The proposed method was simulated under different values of the theoretically considered parameters (ideality coefficient n, saturation current I0 and shunt resistance Rsh) of a CdS/CdTe heterojunction solar cell. The calculated values of W and NAND were established to be dependent on the mentioned above electrical parameters.  相似文献   

9.
Low cost processing of CIGS thin film solar cells   总被引:2,自引:0,他引:2  
A set of low cost techniques with realistic potential for direct manufacturing costs reduction were developed in the last five years while the industrial Cu(In,Ga)Se2 (CIGS) solar cell production is based on vacuum processes, which require high initial investment into production machines. The common properties of these low cost techniques are the use of simple and fast non-vacuum deposition methods and the prefixing of the film-composition on a molecular level in a precursor layer, which is chemically and thermally treated to form a high quality CIGS film. The paste coating approaches use premixed inks which are applied by doctor-blade coating to yield solar cell efficiencies of 13.6%, with the potential to reach 15% and more in the next years. The choice of the precursor material has to be made with respect to the used selenization conditions to avoid detrimental impurity phases. A new precursor material is discussed, which allows fast conversion in selenium atmosphere and was used to produce solar cells with 6.7% efficiency. The CIGS film thickness has to be increased for complete absorption of the incident light.  相似文献   

10.
The influence of variations in the incident solar spectrum on solar cells is often neglected. This paper investigates the magnitude of this variation and its potential influence on the performance of thin film solar cells in a maritime climate. The investigation centres on the analysis of a large number of measurements carried out in Loughborough, UK, at 10 min intervals over a period of 30 months. The magnitude of the spectral variation is presented both on a daily and a seasonal basis. Of the different thin film materials studied, amorphous silicon is shown to be the most susceptible to changes in the spectral distribution, with the “useful fraction” of the light varying in the range +6% to −9% of the annual average, with the maximum occurring in summer time.  相似文献   

11.
X-ray fluorescence has turned out to be a very suitable and reliable tool for the characterization of thin film chalcopyrite solar cells. Besides the composition determination in atomic percent the total mass per unit square (mg/cm2) of the analyzed elements and the film thickness can be measured accurately. Furthermore, a real multi-layer analysis allows in addition to determine the CdS, ZnO and Mo thickness simultaneously with the absorber measurement. By the use of etching techniques, information about a vertical composition gradient can also be obtained. This work shows the possibilities and limitations of the X-ray fluorescence technique for the chalcopyrite solar cell characterization and emphasizes the advantages over the widespread electron probe microanalysis.  相似文献   

12.
薄膜太阳电池的研究进展及应用前景   总被引:5,自引:0,他引:5  
阐述了非晶硅薄膜电池、多晶硅薄膜电池、锑化镉薄膜电池、铜铟镓硒薄膜太阳电池和染料敏化TiO2太阳电池的研究现状,简要介绍了我国薄膜太阳电池研究的进展,指出了太阳电池在我国的应用前景。  相似文献   

13.
Rapid thermal processing (RTP) of SiN x thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were discussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiN x thin film by about 200% after the RTP was reached. PC-1Dsimulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique. __________ Translated from Journal of Shanghai Jiaotong University, 2008, 42(1): 152–155 [译自: 上海交通大学学报]  相似文献   

14.
Rapid thermal processing (RTP) of SiNx thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were discussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiNx thin film by about 200% after the RTP was reached. PC-1D simulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique.  相似文献   

15.
The atmospheric pressure CSS method has been developed as a reproducible and efficient process. Thin film CdTe grown under atmospheric pressure has a rough surface morphology. The density of carbon black powder in the graphite carbon paste for screen printing is a key factor in reducing the series resistance of the device with rough surface CdTe. Using graphite carbon paste with 7 wt% carbon black powder has resulted in cells with a relatively low back contact resistance. A highly efficient large-area CdS/CdTe solar cell (11.0%, 5327 cm2) sub-module has been fabricated using the new technique.  相似文献   

16.
多晶硅薄膜太阳电池因其转换效率高、寿命长和工艺简化等优点而极具潜力。衬底的选择和制备工艺的研究是目前多晶硅薄膜太阳电池的研究重点。本文对多晶硅薄膜太阳电池衬底选择的研究进展作了介绍。  相似文献   

17.
We investigate the potential of solid-phase crystallized Si films on glass for use in polycrystalline Si thin film solar cells. Low-pressure chemical vapour deposition serves to form amorphous Si films on borosilicate, SiO2-coated borosilicate, aluminosilicate glass and fused silica substrates. The films are crystallized at temperatures of around 600°C. Using transmission electron microscopy we determine the grain size in the crystallized films. The average grain size strongly depends on the substrate type, increases with the deposition rate of the amorphous film and is independent of the film thickness. The grain size distribution in our films is log-normal. Films crystallized on SiO2-coated borosilicate glass have an average grain size up to 2.3 μm, while the area weighted average grain size peaks at 4 μm. Since thin crystalline Si solar cells only require a film thickness of several micron, our films seem to be suitable for application to such devices.  相似文献   

18.
This paper describes the investigations of CIS-based solar cells with a new InxSey (IS) buffer layer. Studies were concentrated on determining the deposition conditions to get InxSey thin films with adequate properties to be used in substitution of the CdS buffer layer, usually employed in the fabrication of this type of devices. Before the solar cell fabrication, the buffer layers grown by evaporation of the In2Se3 compound were characterized through transmittance and X-ray diffraction measurements. It was found that good results can be obtained using indium selenide film as the buffer layer, grown in the In2Se3 phase.Solar cells with structure Mo/CIS/In2Se3/ZnO were fabricated. The ZnO layer was deposited by reactive evaporation and the absorber CIS layer was grown on Mo by a two-stage process. The preliminary results obtained with this type of solar cells are Jsc=30.8 mA/cm2, Voc=0.445 V, FF≈0.6 and η=8.3% with an irradiance of 100 mW/cm2. Solar cells fabricated using a CdS buffer layer deposited by CBD on CIS substrate, prepared under the same conditions used in the fabrication of Mo/CIS/In2Se3/ZnO cells, gave the following results: Voc=0.43 V, Jsc=34 mA/cm2, FF≈0.63 and η=9.2%.  相似文献   

19.
The CdTe/CdS thin film solar cell is the most suitable to be fabricated on the form of thin films. The processes used to make all the films, which compose the cell, are quite simple and fast. An efficiency of 16.5% has been reached on laboratory scale and modules of 0.6 × 1.2 m2 with efficiency larger than 8% are now fabricated and commercialized. A strong contribution to the development of this type of solar cells has been given by the Parma University group with the discovery of a new ohmic back contact for CdTe which is very stable in respect to any other ohmic contact used for CdTe, and by the development of a new all dry process to make the cell. An efficiency of 15.8% has been recently obtained on a 10−4 m2 soda-lime glass without using any copper or any other metal of the first group of the periodic table of the elements at the back contact.  相似文献   

20.
TCO and light trapping in silicon thin film solar cells   总被引:6,自引:0,他引:6  
For thin film silicon solar cells and modules incorporating amorphous (a-Si:H) or microcrystalline (μc-Si:H) silicon as absorber materials, light trapping, i.e. increasing the path length of incoming light, plays a decisive role for device performance. This paper discusses ways to realize efficient light trapping schemes by using textured transparent conductive oxides (TCOs) as light scattering, highly conductive and transparent front contact in silicon p–i–n (superstrate) solar cells. Focus is on the concept of applying aluminum-doped zinc oxide (ZnO:Al) films, which are prepared by magnetron sputtering and subsequently textured by a wet-chemical etching step. The influence of electrical, optical and light scattering properties of the ZnO:Al front contact and the role of the back reflector are studied in experimentally prepared a-Si:H and μc-Si:H solar cells. Furthermore, a model is presented which allows to analyze optical losses in the individual layers of a solar cell structure. The model is applied to develop a roadmap for achieving a stable cell efficiency up to 15% in an amorphous/microcrystalline tandem cell. To realize this, necessary prerequisites are the incorporation of an efficient intermediate reflector between a-Si:H top and μc-Si:H bottom cell, the use of a front TCO with very low absorbance and ideal light scattering properties and a low-loss highly reflective back contact. Finally, the mid-frequency reactive sputtering technique is presented as a promising and potentially cost-effective way to up-scale the ZnO front contact preparation to industrial size substrate areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号