首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study analyzes the emission pattern of Decanol combined Jatropha biodiesel (JBD100) fueled diesel engine and compared with conventional diesel fuel (D100). Experiments were conducted in a single-cylinder, 4-stroke naturally aspirated diesel engine with an eddy current dynamometer at a constant speed of 1800 rpm. Modified fuel was prepared using a mechanical agitator, in which the Decanol concentration was varied from 10 to 20% to JBD100. The physicochemical properties of Decanol combined biodiesel are within ASTM limits. JBD100 promotes a lower level of carbon monoxide (CO) hydrocarbon (HC), and smoke emissions with notable increases in NOx and carbon dioxide (CO2) emissions. An inclusion of 20% Decanol in JBD100 reduces the NOx, Smoke, CO, and HC emission by 7.4%, 4.4%, 5.7%, and 5.9%, respectively, under full brake power.  相似文献   

2.
在高原环境(81kPa)下,对4100QBZL型柴油机燃用不同配比生物柴油混合燃料后的排放特性进行了实验研究。实验结果表明:与燃用柴油相比,各工况下,HC、CO和碳烟的排放均有不同程度的降低(分别平均下降4.5%~38.4%、15.4%~43.9%和12.5%~65.5%),高负荷低转速工况下效果尤为明显;NOx的排放也得到明显改善,只有纯生物柴油的NO。排放较柴油上升了0%~2.1%,其他指标均下降(平均下降4.4%~4.9%)。综合考虑,燃用掺混比为30%以内的生物柴油混合燃料,能同时有效地降低HC、CO、NOx和碳烟的排放。  相似文献   

3.
The present study is carried out to formulate stable water-in-soybean biodiesel emulsion fuel and investigate its emission characteristics in a single cylinder diesel engine. Four types of emulsion fuels, which consist of a different percentage of water (5%, 10%, 15%, and 20%) in soybean biodiesel, were prepared with suitable surfactant and properties were measured. The physicochemical properties are on par with EN 14214 standards. The experimental result of test fuels indicates that the soybean biodiesel promotes a lower level of hydrocarbon (HC), carbon monoxide (CO) and smoke emissions compared to base diesel except for nitrogen oxide (NOx) emission. Increase in water concentration with soybean biodiesel significantly reduces the NOx emission and smoke opacity. The HC and CO emissions are further reduced with emulsified biodiesel up to 10% water concentration and beyond that limit, marginal increases are recorded. Overall, it is observed that inclusion of water with soybean biodiesel reduces the HC, CO, NOx and smoke emissions when compared to base diesel and soybean biodiesel, and 10% water in soybean biodiesel is an appropriate solution to reduce the overall emissions in the soybean-fuelled diesel engine.  相似文献   

4.
Alternative fuels have sparked a lot of interest as oil deposits have decreased and environmental concerns have grown. Biodiesel is an alternative fuel that is being researched as a possible replacement for fossil fuels. In the current investigation, the combustion performance, and emission characteristics of CI(Compression Ignition) engine were examined by changing the fuel injection pressure (180, 200, 220 and 240 bar). The biodiesel (B20) used in this analysis was obtained from Mahua oil at 20% v/v blended with neat diesel (20% Mahua Biodiesel + 80% Diesel). CeO2(Cerium Oxide) nanoparticles were introduced to the B20 fuel at four distinct concentrations are 25, 50, 75, and 100 ppm. Performance characteristics such as BTE(Brake Thermal Efficiency) and BSFC(Brake Specific Fuel Consumption) were inferior to diesel, at 240 bar B20 with 25 ppm CeO2 indicated 1.9% increased BTE and 3.8% reduced BSFC compared B20 and 6% lower EGT (Exhaust Gas Temperature) compared diesel. At 200 bar, fuel samples indicated slightly higher In-Cylinder pressure and lower HRR (Heat release rate) compared to diesel. At 200 bar FIP(Fuel Injection Pressure), HC(Hydro Carbon) and CO(Carbon Monoxide) emissions were reduced significantly compared to diesel. The largest reduction in smoke opacity and NOx(Nitrous Oxide) emissions were observed at 240 bar with 75 ppm dosage, but CO2(Carbon Dioxide) emissions were higher at 220 bar.  相似文献   

5.
《能源学会志》2014,87(1):11-17
A direct injection diesel engine fueled by a diesel/biodiesel blend from waste cooking oil up to B100 (a blend of 100% biodiesel content) indicated a combustion efficiency rise by 1.8% at full load. The soot peak volume fraction was reduced by 15.2%, while CO and HC concentrations respectively decreased by 20 and 28.5%. The physical and chemical delay periods respectively diminished by 1.2 and 15.8% for engine noise to pronounce 6.5% reduction. Injection retarding by 5° reduced NOx to those original levels of B0 (a blend of zero biodiesel content) and combined respective reduction magnitudes of 10 and 7% in CO and HC at 75% load. Increasing the speed reduced CO and HC respectively by 26 and 42% at 2.36 times the droplet average strain rate. By coupling the turbulence model to the spray break-up and chemical kinetics models, increasing the injection pressure simultaneously reduced CO, HC and NOx at 17% exhaust gas recirculation ratio.  相似文献   

6.
India is mainly an agricultural country. For irrigation, the farmers are primarily dependent on diesel engines which run on immaculate diesel. In order to reduce the consumption of diesel, oxygenated fuel additives seem to be a good proposition. In this connection, biodiesel is one of the best choices and this study is an attempt in that direction. Of the various non-edible vegetable oils available for making biodiesel, Mahua oil (Madhuca Indica) is preferred since it is widely available across the country. The problem with biodiesel is the higher emission of oxides of nitrogen (NOx). NOx emissions can be controlled with Ad-Blue (Urea) solution. Fortunately, for the irrigation sector, it may be considered as a blessing in disguise since, Urea which is used to control the NOx emissions is used as a fertilizer. In this work an experimental study has been carried out to assess the suitability of selective catalytic reduction (SCR) technique in reducing NOx. To arrive at accurate results, property characterization has been carried out for various blends. Tests were conducted on a multi-cylinder water cooled diesel engine at 2400 rpm. For loading an eddy current dynamometer was used. The injection nozzle opening pressure (NOP) was set to 220 bar with constant static injection timing (SIT) of 18° before top dead center (bTDC). This study presents the results at full load, employing SCR technique. The results were compared with conventional engine results under same operating condition where no reduction technique was employed. It was found that there was a significant reduction in NOx (around 3.91%) when the engine was operated with 25% biodiesel, thereby saving 25% diesel. This study establishes that SCR technique with 25% biodiesel addition as a viable option without any modification in the engine and without any compromise on the engine performance. Therefore, this option can be considered as sustainable one in agricultural operation.  相似文献   

7.
The utilization of renewable gaseous fuels in the diesel engine has gained significant interest in recent years due to its clean-burning nature and higher availability. In this study, hydrogen-rich reformed biogas was used as a gaseous fuel in a common rail diesel engine with diesel as pilot fuel. The hydrogen-rich reformed gas was synthesized through dry-oxidative reforming. The experimentations were performed in the load range from 6 to 24 N m with two different flow rates of gaseous fuel (0.5 and 1.5 kg/h) at a constant speed of 1800 RPM. The effects on engine performance parameters (brake thermal efficiency, brake specific energy consumption, and brake specific diesel consumption), combustion parameters (rate of pressure rise and maximum heat release rate) and emission parameters (Unburnt hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide) were assessed. The induction of gaseous fuel led to an increase in brake thermal efficiency by 10.5%, reduction in brake specific energy consumption by 13.6%, and a reduction of 26.4% in brake specific diesel consumption with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load. The HC, NOX and CO2 emissions were reduced by 18.2%, 7.4% and 1.4% with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load due to lower availability of carbon content in the combustible mixture. The utilization of renewable fuel like hydrogen-rich reformed biogas has great potential for overcoming the issue related to both biogas and hydrogen in diesel engines. Moreover, the higher diesel substitution also demonstrates the potential for cost-saving and fossil fuel conservation.  相似文献   

8.
The present study was set to explore the effect of a novel soluble hybrid nanocatalyst in diesel/biodiesel fuel blends on exergetic performance parameters of a DI diesel engine. Experiments were carried out using two types of diesel/biodiesel blends (i.e., B5 and B20) at four concentrations (0, 30, 60 and 90 ppm) of the hybrid nanocatalyst, i.e., cerium oxide immobilized on amide-functionalized multiwall carbon nanotubes (MWCNT). Furthermore, the exergy analysis was performed at five different loads and two engine speeds. The results obtained revealed that the exergetic parameters were profoundly influenced by engine speed and load. In general, increasing engine speed and load increased the magnitude of the destructed exergy. Moreover, the exergy efficiency increased by increasing engine load, while it decreased by elevating engine speed. However, the applied fuel blends had approximately similar exergetic efficiency and sustainability index. Interestingly, a remarkable reduction in emissions was obtained by incorporating the soluble catalyst nanoparticles to the diesel/biodiesel blends. Thus, it could be concluded that the diesel/biodiesel blends containing amide-functionalized MWCNTs-CeO2 catalyst might substitute the use of pure diesel fuel without any unfavorable change in the exergetic performance parameters of the DI engines.  相似文献   

9.
In this experimental research, the hydrogen gas at a different flow rate (4 lpm, 8 lpm, & 12 lpm) is introduced into the intake port of a diesel engine fueled with B20 (20% CNSL (Cashew nut shell liquid) + 80% diesel) biodiesel blend to find out the best H2 flow rate. Then, ethanol-blended (5%, 10%, and 15% by volume) B20 blend along with the best H2 flow rate are tested in the same engine to examine the engine performance. The experimental results showed that B20 with 8 lpm H2 flow gives the maximum brake thermal efficiency and subsequently reduces the BSFC. Furthermore, by blending ethanol with the B20 blend, the BTE of the engine is improved further. The 10% ethanol blended B20 blend with 8 lpm hydrogen flow gives the maximum BTE of 37.9% higher than diesel whose values are 33.6% at full load. Also, this fuel combination led to the maximum reduced levels of CO and HC emissions with an increase in exhaust gas temperature and NOx emissions. From the results, the 10% ethanol blended B20 blend with 8 lpm H2 flow dual-fuel configuration is recommended as an alternative to sole diesel fuel.  相似文献   

10.
The combustion of hydrogen–diesel blend fuel was investigated under simulated direct injection (DI) diesel engine conditions. The investigation presented in this paper concerns numerical analysis of neat diesel combustion mode and hydrogen enriched diesel combustion in a compression ignition (CI) engine. The parameters varied in this simulation included: H2/diesel blend fuel ratio, engine speed, and air/fuel ratio. The study on the simultaneous combustion of hydrogen and diesel fuel was conducted with various hydrogen doses in the range from 0.05% to 50% (by volume) for different engine speed from 1000 – 4000 rpm and air/fuel ratios (A/F) varies from 10 – 80. The results show that, applying hydrogen as an extra fuel, which can be added to diesel fuel in the (CI) engine results in improved engine performance and reduce emissions compared to the case of neat diesel operation because this measure approaches the combustion process to constant volume. Moreover, small amounts of hydrogen when added to a diesel engine shorten the diesel ignition lag and, in this way, decrease the rate of pressure rise which provides better conditions for soft run of the engine. Comparative results are given for various hydrogen/diesel ratio, engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions.  相似文献   

11.
An experimental study was conducted on a diesel engine fueled with ultra-low sulfur diesel (ULSD), palm methyl ester (PME), a blended fuel containing 50% by volume each of the ULSD and PME, and naturally aspirated hydrogen, at an engine speed of 1800 rev min−1 under five loads. Hydrogen was added to provide 10% and 20% of the total fuel energy. The following results are obtained with hydrogen addition. There is little change in peak in-cylinder pressure and peak heat release rate. The influence on fuel consumption and brake thermal efficiency is engine load and fuel dependent; being negative for the three liquid fuels at low engine loads but positive for ULSD and B50 and negligible for PME at medium-to-high loads. CO and CO2 emissions decrease. HC decreases at medium-to-high loads, but increases at low loads. NOx emission increases for PME only but NO2 increases for the three liquid fuels. Smoke opacity, particle mass and number concentrations are all reduced for the three liquid fuels.  相似文献   

12.
Fast exhausting fossil fuel reserves and high rise in the air pollution levels due to combustion of these fuels bound us to discover some cleaner and environment-friendly fuels for the engines. Biodiesel from edible and non-edible seed oils has been identified as a better alternate of the diesel fuel in engines with a little sacrifice in terms of power output but with an improvement in exhaust emissions. The aim of the present research work is to optimize the input parameters of diesel engine running on Polanga biodiesel to improve performance and exhaust emissions. The input parameters selected for optimization are fuel injection timing, fuel injection pressure, Polanga biodiesel blend, and engine load with respect to brake thermal efficiency, brake specific fuel consumption, hydrocarbon emission, smoke opacity, and emission of nitrogen oxides. Relative weights of the response variables were calculated by standard deviation. The optimum combination of input parameters was obtained by Taguchi-based Multi-Objective Optimization by Ratio Analysis. Experiments were performed according to Taguchi’s L16 orthogonal array in a random manner in which three replicates of each experiment were noted. The optimum combination of input parameters for maximum performance and minimum exhaust emissions found to be as fuel injection timing 27° bTDC, fuel injection pressure –? 220 bar, biodiesel blend –? B40, and engine load –? 60%. The optimum values of the response variables, at the obtained optimum combination of input parameters, were predicted by Taguchi method and then verified experimentally and a good relation was found between them. These optimum values found to be as brake thermal efficiency –? 36.351%, brake specific fuel consumption –? 0.322 kg/kW-h, hydrocarbon emission –? 2.193 ppm, smoke opacity –? 80.925 HSU, and NOx emission –? 690.987 ppmv.  相似文献   

13.
The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions.  相似文献   

14.
The present study investigated the effect of compression ratio (CR) with the use of exhaust gas recirculation (EGR) technology on the performance of combustion characteristics at different CRs and engine loads; the brake thermal efficiency (BTE), specific fuel consumption (SFC), volumetric efficiency (VOL.EFF), exhaust gas temperature, carbon dioxide emission (CO2), hydrocarbons (HC), nitrogen oxides (NOx), and oxygen content (O2). The single-cylinder, four-stroke compression ignition engine was run on a mixture of diesel and biodiesel prepared from Iraqi waste cooking oil at (B0, B10, B20, and B30). A comparison has been achieved for these combustion characteristics at different blends, load, and CRs (14.5, 15.5, and 16.5) at 1500 rpm constant engine speed. The transesterification process is used to produce biodiesel and ASTM standards have been used to determine the physical and chemical properties of biodiesel and compare them to net diesel fuel. The preliminary conducting tests indicated that engine performance and emissions improved with the B20 mixture. Experimental test results showed an increase in BTE when CR increased by 17% and SFC increased by 23%. It also found a higher VOL.EFF by 6% at higher pressure ratios. A continuous decrease in BTE values and an increase in SFC were sustained when the percentage of biodiesel in the mixture was increased. Emissions of carbon dioxide, HC, and NOx increased by 12%, 50%, and 40%, respectively, as CR reached high values. NOx increased with the addition of biodiesel to 35%, which necessitated the use of EGR technology at rates of 5% and 10%. The results indicated that the best results were obtained in the case of running the engine with a mixing ratio of B20 with the addition of 10% EGR, NOx decreased by 47% against a slight increase in other emissions.  相似文献   

15.
In this study, neat biodiesel with octanol additive was employed in a diesel engine and its effects on engine emission were studied. The five fuels evaluated were neat palm kernal oil biodiesel, octanol blended with biodiesel by 10%, 20%, and 30% volume, and diesel. All the emissions are reduced by the addition of octanol in biodiesel in all loads owing to the higher oxygen concentration of air/fuel mixtures and improved atomization. Hence, it is concluded that the neat biodiesel and octanol blends can be employed as an alternative fuel for existing unmodified diesel engines owing to its lesser emission characteristics.  相似文献   

16.
Utilization of the waste products as an alternative fuel could reduce the dependence on fossil fuel. The three types of upgraded waste source fuels discussed in this paper were tire derived fuel (TDF), waste plastic disposal fuel (WPD) and upgraded waste cooking oil (UWCO). The detailed combustion pressure showed that kinematic viscosity and cetane number played an important role in determining the combustion quality. TDF's high kinematic viscosity and low cetane number affected its fuel vaporization process; thus, lengthening its ignition delay. UWCO showed the 14% higher power and 13.8% higher torque compared to diesel fuel (DF). WPD produced the lowest NOx due to its low pressure curve during combustion. TDF had produced the highest exhaust emissions (CO, CO2, NO and NOx). Particulate matter (PM) emissions by UWCO blends were lower than DF. UWCO's soot concentration was 40% lower than DF and increased to 62.5% from low to high engine speed operation.  相似文献   

17.
The effect of the physical and chemical properties of biodiesel fuels on the combustion process and pollutants formation in Direct Injection (DI) engine are investigated numerically by using multi-dimensional Computational Fluid Dynamics (CFD) simulation. In the current study, methyl butanoate (MB) and n-heptane are used as the surrogates for the biodiesel fuel and the conventional diesel fuel. Detailed kinetic chemical mechanisms for MB and n-heptane are implemented to simulate the combustion process. It is shown that the differences in the chemical properties between the biodiesel fuel and the diesel fuel affect the whole combustion process more significantly than the differences in the physical properties. While the variations of both the chemical and the physical properties between the biodiesel and diesel fuel influence the soot formation at the equivalent level, the variations in the chemical properties play a crucial role in the NOx emissions formation.  相似文献   

18.
In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The important properties of biodiesel were compared with those of diesel. Diesel and biodiesel were used as fuels in the compression ignition engine, and its performance, emissions and combustion characteristics of the engine were analyzed. The results showed that biodiesel exhibited the similar combustion stages to that of diesel, however, biodiesel showed an earlier start of combustion. At lower engine loads, the peak cylinder pressure, the peak rate of pressure rise and the peak of heat release rate during premixed combustion phase were higher for biodiesel than for diesel. At higher engine loads, the peak cylinder pressure of biodiesel was almost similar to that of diesel, but the peak rate of pressure rise and the peak of heat release rate were lower for biodiesel. The power output of biodiesel was almost identical with that of diesel. The brake specific fuel consumption was higher for biodiesel due to its lower heating value. Biodiesel provided significant reduction in CO, HC, NOx and smoke under speed characteristic at full engine load. Based on this study, biodiesel can be used as a substitute for diesel in diesel engine.  相似文献   

19.
The major obstacle to biodiesel commercialization is the high cost of raw materials. Biodiesel from waste cooking oil is an economical source and thus an effective strategy for reducing the raw material cost. Using waste cooking oil also solves the problem of waste oil disposal. This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potencies and regulated matters, and brake specific fuel consumption from a heavy-duty diesel engine under the US-HDD transient cycle for five test fuels: ultra-low sulfur diesel (ULSD), WCOB5 (5 vol% biodiesel made from waste cooking oil + 95 vol% ULSD), WCOB10, WCOB20, and WCOB30. Experimental results indicate using ULSD/WCOB blends decreased PAHs by 7.53%-37.5%, particulate matter by 5.29%-8.32%, total hydrocarbons by 10.5%-36.0%, and carbon monoxide by 3.33%-13.1% as compared to using ULSD. The wide usage of WCOB blends as alternative fuels could protect the environment.  相似文献   

20.
An experimental study is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5%, 10% and 15% (by vol.) ethanol, on the combustion and emissions of a standard, fully instrumented, four-stroke, high-speed, direct injection (HSDI), ‘Hydra’ diesel engine located at the authors’ laboratory. The tests are conducted using each of the above fuel blends or neat diesel fuel, with the engine working at a speed of 2000 rpm and at four different loads. In each test, combustion chamber and fuel injection pressure diagrams are obtained using a specially developed, high-speed, data acquisition and processing system. A heat release analysis of the experimentally obtained cylinder pressure diagrams is developed and used, with the pertinent application of the energy and state equations. From the analysis results, plots of the history in the combustion chamber of the gross heat release rate and other related parameters reveal some very interesting features, which shed light on the combustion mechanism when using these blends. Moreover, for each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions are measured. The differences in the performance and exhaust emission parameters from the baseline operation of the diesel engine, i.e., when working with neat diesel fuel, are determined and compared. The heat release analysis results for the relevant combustion mechanism, combined with the widely differing physical and chemical properties of the ethanol against those for the diesel fuel, are used to aid the correct interpretation of the observed engine behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号