首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The cytochrome d terminal oxidase complex was recently purified from Escherichia coli membranes (Miller, M. J., and Gennis , R. B. (1983) J. Biol. Chem. 258, 9159-1965). The complex contains two polypeptides, subunits I and II, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and three spectroscopically defined cytochromes, b558 , a1, and d. A mutant that failed to oxidize N,N,N',N'-tetramethyl-p-phenylenediamine was obtained which was lacking this terminal oxidase complex and was shown to map at a locus called cyd on the E. coli genome. In this paper, localized mutagenesis was used to generate a series of mutants in the cytochrome d terminal oxidase. These mutants were isolated by a newly developed selection procedure based on their sensitivity to azide. Two classes of mutants which map to the cyd locus were obtained, cydA and cydB . The cydA phenotype included the lack of all three spectroscopically detectable cytochromes as well as the absence of both polypeptides, determined by immunological criteria. Strains manifesting the cydB phenotype lacked cytochromes a1 and d, but had a normal amount of cytochrome b558 . Immunological analysis showed that subunit I (57,000 daltons) was present in the membranes, but that subunit II (43,000 daltons) was missing. These data justify the conclusion that subunit I of this two-subunit complex can be identified as the cytochrome b558 component of the cytochrome d terminal oxidase complex.  相似文献   

2.
The cytochrome d complex is a component of the aerobic respiratory system of Escherichia coli. The enzyme functions as a terminal oxidase, oxidizing ubiquinol-8 within the cytoplasmic membrane and reducing oxygen to water. The enzyme is of particular interest because it is a coupling site in the electron transfer chain. The electron transfer reaction catalyzed by this enzyme is coupled to the translocations of protons across the membrane (H+/e-approximately equal to 1). The oxidase contains two subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, with molecular weights of 58,000 and 43,000. In this paper, the question of the quaternary structure is addressed. Quantitative N-terminal analysis of the isolated enzyme and relative mass quantitation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicate the subunits are present in equimolar amounts. Sedimentation velocity and sedimentation equilibrium studies were used to characterize the hydrodynamic properties of the purified enzyme solubilized in Triton X-100, under conditions where the enzyme is active. It is concluded that the active enzyme in Triton X-100 is a heterodimer, containing one copy of each subunit. This is likely the structure of the enzyme in the E. coli membrane.  相似文献   

3.
The aerobic respiratory chain of Escherichia coli is branched. In aerobically grown cells harvested in midexponential phase, a respiratory chain containing only b-type cytochromes is predominant. This chain contains a terminal oxidase which is a b-type cytochrome, referred to as cytochrome o. However, when the bacteria are grown under conditions of oxygen limitation, additional components of the respiratory chain are induced, as evidenced by the appearance of new spectroscopic species. These include a new b-type cytochrome, cytochrome b558, as well as cytochrome a1 and cytochrome d. In this paper, a purification protocol and the initial characterization of the terminal oxidase complex containing cytochrome d are reported. Solubilization of the membrane is effected by Zwittergent 3-12, and purification is accomplished by chromatography with DEAE-Sepharose CL-6B and hydroxyapatite. The complex contains cytochrome b558, a1, and d. Analysis by sodium dodecyl sulfate-polyacrylamide gels indicates that the complex contains only two types of polypeptides with the molecular weights estimated to be 57,000 and 43,000. The purified complex has oxidase activity in the presence of detergents, utilizing substrates including ubinquinol-1, N,N,N',N'-tetramethyl-p-phenylenediamine, and 2,3,5,6-tetramethyl-p-phenylenediamine. The cytochrome d complex contains protoheme IX and iron, but does not contain nonheme iron or copper. Approximately half of the cytochromes which are thought to participate in E. coli aerobic respiration are accounted for by this single complex. These results suggest that the E. coli aerobic respiratory chain is organized around a relatively small number of cytochrome-containing complexes.  相似文献   

4.
Monospecific antibodies were raised against the two terminal oxidase complexes of the aerobic respiratory chain of Escherichia coli. These are the cytochrome d and cytochrome o complexes. The antibodies were used to check for the occurrence of cross-reactive antigens in membrane preparations from a variety of gram-negative bacteria by rocket immunoelectrophoresis and immunoblotting techniques. With these criteria, proteins closely related to the cytochrome d complex of E. coli appeared to be widely distributed. Among the strains containing cytochrome d-related material were Serratia marcescens, Photobacterium phosphoreum, Salmonella typhimurium, Klebsiella pneumoniae, and Azotobacter vinelandii. The data suggest that the d-type terminal oxidase in many of these strains is associated in a complex with b-type and a1-type cytochromes, as has been found to be the case in E. coli. K. pneumoniae and S. typhimurium were also shown to have material cross-reactive to the E. coli cytochrome o complex.  相似文献   

5.
Partial purification of a cytochrome bd complex from Azotobacter vinelandii grown under high aeration was achieved by isolating respiratory particles enriched in this hemoprotein via differential centrifugation and detergent extraction. The cytochrome bd complex was subsequently solubilized from the inner membrane with dodecyl maltoside and purified to near homogeneity via DEAE-Sepharose chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the complex consisted of two subunits, with sizes in good agreement with those predicted from the cloned cyd locus (59.7 and 42 kDa). Spectral analysis of the purified complex indicated that the heme components present were cytochromes b560, b595, and d; CO difference spectral studies identified cytochrome d as a CO-reactive component. The complex had a Km for ubiquinol-1 approximately seven times larger than that for the analogous bd complex from Escherichia coli, and O2 consumption curves revealed a Km value for O2 three times greater than that which we determined for the E. coli bd complex.  相似文献   

6.
Immunological methods were used to obtain information about Escherichia coli heme proteins. There is a membrane-bound catalase which consists of a single subunit (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis) which is also present in the soluble fraction. Antibodies raised against purified, soluble cytochrome b562 showed that this cytochrome is not related to any of the membrane-bound cytochromes, including the b562 component of the cytochrome o complex. Cytochrome b556 is immunologically unrelated to the cytochrome b556 NR associated with the nitrate reductase system. Cytochrome b556 and cytochrome o are not present in a constant ratio in the membrane.  相似文献   

7.
The isolated membranes from an Escherichia coli mutant strain which lacks spectroscopically detectable levels of cytochromes d, a1, and b558 also have abnormally low levels of N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activity. In this paper, it is shown that the material previously identified as the N,N,N',N'-tetramethyl-p-phenylenediamine oxidase is, in fact, the two-subunit cytochrome d complex. Antisera directed against the native cytochrome d complex as well as against each of two subunits apparent on sodium dodecyl sulfate-polyacrylamide gels were used to show that the mutant strain lacks both subunits of the cytochrome d complex. Introduction of F-prime F152 into the mutant strain restored the two subunits along with the spectroscopic and enzymatic activity associated with the cytochrome d complex.  相似文献   

8.
Rat liver cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase; EC 1.9.3.1) was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis into 12 different polypeptide chains. Specific antisera against the holoenzyme and against purified subunits IV and VIII were used to characterize the enzyme complex. The antiserum against subunit IV precipitates from sodium dodecyl sulfate-dissociated mitochondria only subunit IV and from Triton X-100-dissolved mitochondria all 12 polypeptide chains, indicating their integral location within the enzyme complex. Different antisera against the holoenzyme only precipitate subunits IV, V and VIb from sodium dodecyl sulfate-dissociated mitochondria, suggesting the location of these subunits on the surface layer of the complex. Subunit VIII is thought to be located within the complex, since a specific antiserum does not precipitate the complex. The amino acid composition of all 12 protein subunits is different, thus excluding their origin from proteolytic degradation. The proteolytic degradation of subunit IV into IV during isolation of the enzyme was corroborated by the very similar amino acid composition of both proteins.  相似文献   

9.
Cytochrome c oxidase has been purified from rat liver mitochondria using affinity chromatography. The preparation contains 10.5 to 13.4 nmol of heme a + a3 per mg of protein and migrates as a single band during polyacrylamide gel electrophoresis under nondissociating conditions. It has a heme a/a3 ratio of 1.12 and is free of cytochromes b, c, and c1 as well as the enzymes, NADH dehydrogenase, succinic dehydrogenase, coenzyme Q-cytochrome c reductase, and ATPase. The enzyme preparation consists of six polypeptides having apparent Mr of 66,000, 39,000, 23,000, 14,000, 12,500 and 10,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The peptide composition is similar to those found for cytochrome c oxidases from other systems. The enzymatic activity of the purified enzyme is completely inhibited by carbon monoxide or cyanide, partially inhibited by Triton X-100 and dramatically enhanced by Tween 80 or phospholipids.  相似文献   

10.
Xanthine dehydrogenase (XDH, EC 1.2.1.37) was purified from root nodules of soybean (Glycine max) and used to prepare a polyclonal rabbit antiserum. Monospecificity of this antiserum was ascertained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the immunoprecipate. During root nodule development of soybean, only one form of XDH was detected on an immunological basis. Titration of XDH by immunoelectrophoresis showed that a remarkable increase in the amount of XDH occurred between two and four weeks after inoculation, in parallel with the increase in enzyme activity. Localization of XDH by immunofluorescence indicated that the enzyme was present exclusively in uninfected cells where it appeared to be associated with discrete organellelsAbbreviations IgG immunoglobulin G - SDS-PAGE sodium dodecyl sulfate — polyacrylamide gel electrophoresis - XDH xanthine dehydrogenase  相似文献   

11.
Ubiquinol-oxidizing activity was detected in an acidophilic chemolithotrophic iron-oxidizing bacterium, T. ferrooxidans. The ubiquinol oxidase was purified 79-fold from plasma membranes of T. ferrooxidans NASF-1 cells. The purified oxidase is composed of two polypeptides with apparent molecular masses of 32,600 and 50,100 Da, as measured by gel electrophoresis in the presence of sodium dodecyl sulfate. The absorption spectrum of the reduced enzyme at room temperature showed big peaks at 530 and 563, and a small broad peak at 635 nm, indicating the involvement of cytochromes b and d. Characteristic peaks of cytochromes a and c were not observed in the spectrum at around 600 and 550 nm, respectively. This enzyme combined with CO, and its CO-reduced minus reduced difference spectrum showed peaks at 409 nm and 563 nm and a trough at 431 nm. These results indicated that the oxidase contained cytochrome b, but the involvement of cytochrome d was not clear. The enzyme catalyzed the oxidations of ubiquinol-2 and reduced N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. The ubiquinol oxidase activity was activated by the addition of albumin and lecithin to the reaction mixture and inhibited by the respiratory inhibitors KCN, HQNO, NaN3, and antimycin A1, although the enzyme was relatively resistant to KCN, and the divalent cation, Zn2+, compared with ubiquinol oxidases of E. coli.  相似文献   

12.
The membrane composition of 11 strains of Acholeplasma laidlawii, including three strains persistently infected with mycoplasmaviruses MVL51, MVL2, and MVL3, was studied and correlated with mycoplasmavirus sensitivity. Membranes of the strains had similiar sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns, and all strains were inhibited by an antiserum produced against membranes from one of the strains. The amounts of integral membrane proteins solubilized by the nonionic detergent Tween 20 differed considerably. Therefore, characteristic crossed immunoelectrophoresis patterns were obtained for each strain. Strains persistently infected with MVL2 and MVL3 were notably different from the noninfected host. The ability to propagate any of the viruses was not correlated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis or crossed immunoelectrophoresis patterns. The persistently infected strains had a characteristic lipid composition. MVL51-resistant strains, including a resistant clone selected from a sensitive strain, were characterized by a large monoglucosyldiglyceride/diglucosyldiglyceride ratio and trace amounts of diphosphatidylglyceol (as opposed to the sensitive strains). Differences in lipid composition in A. laidlawii seem to affect the relationship between cells and viruses.  相似文献   

13.
The cytochrome o complex is a bo-type ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. This complex has a close structural and functional relationship with the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. The specific activity, subunit composition, and metal content of the purified cytochrome o complex are not consistent for different preparative protocols reported in the literature. This paper presents a relatively simple preparation of the enzyme starting with a strain of Escherichia coli which overproduces the oxidase. The pure enzyme contains four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Partial amino acid sequence data confirm the identities of subunit I, II, and III from the SDS-PAGE analysis as the cyoB, cyoA, and cyoC gene products, respectively. A slight modification of the purification protocol yields an oxidase preparation that contains a possible fifth subunit which may be the cyoE gene product. The pure four-subunit enzyme contains 2 equivs of iron but only 1 equiv of copper. There is no electron paramagnetic resonance detectable copper in the purified enzyme. Hence, the equivalent of CuA of the aa3-type cytochrome c oxidases is absent in this quinol oxidase. There is also no zinc in the purified quinol oxidase. Finally, monoclonal antibodies are reported that interact with subunit II. One of these monoclonals inhibits the quinol oxidase activity of the detergent-solubilized, purified oxidase. Hence, although subunit II does not contain CuA and does not interact with cytochrome c, it still must have an important function in the bo-type ubiquinol oxidase.  相似文献   

14.
The characteristics of the respiratory system of Acetobacter diazotrophicus PAL5 were investigated. Increasing aeration (from 0.5 to 4.0 liters of air min(-1) liter of medium(-1)) had a strong positive effect on growth and on the diazotrophic activity of cultures. Cells obtained from well-aerated and diazotrophically active cultures possessed a highly active, membrane-bound electron transport system with dehydrogenases for NADH, glucose, and acetaldehyde as the main electron donors. Ethanol, succinate, and gluconate were also oxidized but to only a minor extent. Terminal cytochrome c oxidase-type activity was poor as measured by reduced N, N,N,N'-tetramethyl-p-phenylenediamine, but quinol oxidase-type activity, as measured by 2,3,5,6-tetrachloro-1,4-benzenediol, was high. Spectral and high-pressure liquid chromatography analysis of membranes revealed the presence of cytochrome ba as a putative oxidase in cells obtained from diazotrophically active cultures. Cells were also rich in c-type cytochromes; four bands of high molecular mass (i.e., 67, 56, 52, and 45 kDa) were revealed by a peroxidase activity stain in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. KCN inhibition curves of respiratory oxidase activities were biphasic, with a highly resistant component. Treatment of membranes with 0.2% Triton X-100 solubilized c-type cytochromes and resulted in a preparation that was significantly more sensitive to cyanide. Repression of diazotrophic activity in well-aerated cultures by 40 mM (NH(4))(2)SO(4) caused a significant decrease of the respiratory activities. It is noteworthy that the levels of glucose dehydrogenase and putative oxidase ba decreased 6. 8- and 10-fold, respectively. In these cells, a bd-type cytochrome seems to be the major terminal oxidase. Thus, it would seem that glucose dehydrogenase and cytochrome ba are key components of the respiratory system of A. diazotrophicus during aerobic diazotrophy.  相似文献   

15.
The cytochrome o complex is one of two ubiquinol oxidases in the aerobic respiratory system of Escherichia coli. This enzyme catalyzes the two-electron oxidation of ubiquinol-8 which is located in the cytoplasmic membrane, and the four-electron reduction of molecular oxygen to water. The purified oxidase contains at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and has been shown to couple electron flux to the generation of a proton motive force across the membrane. In this paper, the DNA sequence of the cyo operon, containing the structural genes for the oxidase, is reported. This operon is shown to encode five open reading frames, cyoABCDE. The gene products of three of these, cyoA, cyoB, and cyoC, are clearly related to subunits II, I, and III, respectively, of the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. This family of cytochrome c oxidases contain heme a and copper as prosthetic groups, whereas the E. coli enzyme contains heme b (protoheme IX) and copper. The most striking sequence similarities relate the large subunits (I) of both the E. coli quinol oxidase and the cytochrome c oxidases. It is likely that the sequence similarities reflect a common molecular architecture of the two heme binding sites and of a copper binding site in these enzymes. In addition, the cyoE open reading frame is closely related to a gene denoted ORF1 from Paracoccus dentrificans which is located in between the genes encoding subunits II and III of the cytochrome c oxidase of this organism. The function of the ORF1 gene product is not known. These sequence relationships define a superfamily of membrane-bound respiratory oxidases which share structural features but which have different functions. The E. coli cytochrome o complex oxidizes ubiquinol but has no ability to catalyze the oxidation of reduced cytochrome c. Nevertheless, it is clear that the E. coli oxidase and the aa3-type cytochrome c oxidases must have very similar structures, at least in the vicinity of the catalytic centers, and they are very likely to have similar mechanisms for bioenergetic coupling (proton pumping).  相似文献   

16.
Expression and characterization of the human c-myc DNA-binding protein.   总被引:52,自引:21,他引:31       下载免费PDF全文
In an effort to study in detail the nature of the protein product of the human protooncogene c-myc, we have expressed the gene at high levels in Escherichia coli. The c-myc coding region was taken from a full-length cDNA clone and inserted into a vector designed to express foreign gene products efficiently in E. coli. Pulse-labeling experiments indicated that the rate of expression of c-myc in this thermoinducible expression system is very efficient. The product was relatively stable and accumulated to approximately 10% of total cellular protein. A purification protocol was devised which allowed the c-myc protein to be readily purified in quantities sufficient for detailed biochemical and physical analyses. A high-titer polyclonal antiserum was raised against the pure protein and shown to immunoprecipitate the p110gag-myc fusion protein of MC-29-infected quail cells. This antiserum also selectively detects a protein with an apparent molecular weight of 64,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis from a Burkitt lymphoma cell line. We conclude that this 64-kilodalton protein is the human c-myc gene product since the E. coli-made protein exhibits an equivalent molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even though its calculated molecular weight is 49,000. Furthermore, we demonstrate that the bacterially made human c-myc protein is a DNA-binding protein and that it exhibits a high nonspecific affinity for double-stranded DNA.  相似文献   

17.
The interferon inducing agents, polyriboinosinic: polyribocytidylic acid and tilorone, and Freund's complete adjuvant cause a marked depression of several components of the hepatic mixed-function oxidase system. Separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and quantitation by fluorescence gel scanning of different molecular weight species of cytochrome P-450 indicate that the depressant effect of these agents on the apoprotein moieties of cytochrome P-450 is of a specific nature.  相似文献   

18.
The cytochrome o terminal oxidases from the bacteria Vitreoscilla and Escherichia coli are structurally and functionally related. They have similar optical spectra, both exhibit ubiquinol-1 oxidase activity and are inhibited similarly. Both enzymes contain four subunits by SDS-polyacrylamide gel electrophoresis analysis and contain protoheme IX and Cu2+ prosthetic groups. Antibodies raised against the oxidase purified from E. coli crossreact with the Vitreoscilla oxidase.  相似文献   

19.
We report a procedure for the isolation of IIIglc of Salmonella typhimurium, a protein component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. IIIGlc is a soluble protein with a molecular weight of 21,000, as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified protein is involved in the phosphoenolpyruvate-dependent phosphorylation of methyl alpha-glucoside in vitro. Its affinity for octyl-Sepharose may be an indication of the partial hydrophobic nature of IIIGlc. A specific antiserum against purified IIIGlc was prepared. Growth on different carbon sources did not affect the synthesis of IIIGlc, as determined by quantitative immunoelectrophoresis. Mutations which lower the adenosine 3',5'-phosphate level, such as cya and pts, do not alter the IIIGlc level. The closely related enteric bacteria Escherichia coli and Klebsiella aerogenes contain a protein factor which is closely related to IIIGlc of S. typhimurium, whereas Staphylococcus aureus does not.  相似文献   

20.
The cytochrome o complex of the Escherichia coli aerobic respiratory chain is a ubiquinol oxidase. The enzyme consists of at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and contains two heme b prosthetic groups (b555 and b562) plus copper. The sequence of the cyo operon, encoding the subunits of the oxidase, reveals five open reading frames, cyoABCDE. This paper describes results obtained by expressing independently cyoA and cyoB in the absence of the other subunits of the complex. Polyclonal antibodies which react with subunits I and II of the purified oxidase demonstrate that cyoA and cyoB correspond to subunit II and subunit I, respectively, of the complex. These subunits are stably inserted into the membrane when expressed. Furthermore, expression of cyoB (subunit I) results in elevated heme levels in the membrane. Reduced-minus-oxidized spectra suggest that the cytochrome b555 component is present but that the cytochrome b562 component is not. This heme component is shown to bind to CO, as it does in the intact enzyme. Hence, subunit I alone is sufficient for the assembly of the stable CO-binding heme component of this oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号