首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We investigate characteristics of spin tunneling time in ZnSe/Ze1-xMnxSe multilayers under the influence of both an electric field and a magnetic field. The results indicate that the tunneling time shows complicated oscillations and significant spin separation for electrons with different spin orientations traversing semimagnetic semiconductor heterostructures. It is also shown that the tunneling time exhibits obvious asymmetry in opposite tunneling directions for electrons tunneling through asymmetric heterostructures, which mainly occurs in resonant regions. The degree of the asymmetry of the tunneling time is not only spin-polarization dependent but also external-field induced. Received 10 July 2001  相似文献   

2.
We investigated the shot noise properties in the diluted-magnetic-semiconductor/semiconductor heterostructures, where the sp-d exchange interaction gives rise to a giant spin splitting when an external magnetic field is applied along the growth direction of the heterostructures. It is found that the noise becomes strongly spin-dependent and can be greatly modulated not only by the external magnetic and electric fields, but also by the structural configuration and geometric parameters. Both the spin-up and spin-down components of the noise spectral density can be greatly suppressed by the magnetic field. The Fano factor is notably sensitive to the transmission probabilities, which varies greatly with the spin-polarization, the external magnetic field, and the structural configuration.  相似文献   

3.
We propose in theory a curved nanowire structure that can both serve as a spin inverter and a spin polarizer driven by a periodic Rashba spin–orbit coupling (SOC) and a uniform Dresselhaus SOC. The curved section of the U-shaped quasi-one dimensional nanowire with an arc of radius R and circumferential length πR is divided into segments of equal length initially having only its inherent homogeneous Dresselhaus SOC. Then a Rashba-type SOC is applied at every alternating segment. By tuning the Rashba SOC strength and the incident electron energy, this device can flip the spin at the output of an incoming spin-polarized electron. On the other hand, this same device acts as a spin filter for an unpolarized input for which an outgoing electron with a non-zero polarization can be achieved without the application of an external magnetic field. Moreover, the potential modulation caused by the periodic Rashba SOC enables this device to function as an attenuator for a certain range of incident electron energies that can make the probability current density drop to 10−4 of its otherwise magnitude in other regimes.  相似文献   

4.
We establish a general formalism of the bulk spin polarization (BSP) and the current-based spin polarization (CSP) for mesoscopic ferromagnetic and spin–orbit interaction (SOI) semiconducting systems. Based on this formalism, we reveal the basic properties of BSP and CSP and their relationships. The BSP describes the intrinsic spin polarized properties of devices. The CSP depends on both intrinsic parameters of device and the incident current. For the non-spin-polarized incident current with the in-phase spin-phase coherence, CSP equals to BSP. We give analytically the BSP and CSP of several typical nanodevice models, ferromagnetic nanowire, Rashba nanowire and rings. These results provide basic physical behaviors of BSP and CSP and their relationships.  相似文献   

5.
Jian-Duo Lu   《Applied Surface Science》2008,254(16):5044-5047
In this paper, the bias-dependent electron transport is investigated in detail in a magnetic double-barrier nanostructure in the presence of two bias voltages. It is shown that the large spin-polarization can be achieved in such a nanostructure, and the degree of the spin-polarization is strongly dependent on the applied bias. These interesting properties can provide an alternative scheme to spin-polarize electrons into semiconductors, and this device may be used as a bias-tunable spin filter.  相似文献   

6.
Based on first-principles calculations within density functional theory, we studied the effects of Cr adsorption on the electronic and magnetic properties of Bi2Se3 topological insulators employing spin–orbit coupling (SOC) self-consistently. Cr atom induces a spin-polarization with total net magnetic moments of 2.157 μB (spin up). There is a p-d hybridization between the Cr 3d states and the nearest neighbor Se 4p states. A peak of density of states appears at Fermi level. The electronic structures change and the energy levels split near the Fermi level. No gap opening has been found at the Dirac point of the surface state from the bottom surface.  相似文献   

7.
Here we present the realization of a room temperature operating spin-valve transistor with huge magnetocurrent (MC=300%) at low fields. This spin-valve transistor employs hot-electron transport across a Ni81Fe19/Au/Co spin valve. Hot electrons are injected into the spin valve across a Si–Pt Schottky barrier. After traversing the spin valve, these hot electrons are collected using a second Schottky barrier (Si–Au), which provides energy and momentum selection. The collector current is found to be extremely sensitive to the spin-dependent scattering of hot electrons in the spin valve, and therefore on the applied magnetic field. We also illustrate the role of the collector diode characteristics in determining the magnetocurrent under collector bias.  相似文献   

8.
We discuss pulsed electron spin resonance measurements of electrons in Si and determine the spin coherence from the decay of the spin echo signals. Tightly bound donor electrons in isotopically enriched 28Si are found to have exceptionally long spin coherence. Placing the donors near a surface or interface is found to decrease the spin coherence time, but it is still in the range of milliseconds. Unbound two-dimensional electrons have shorter coherence times of a few microseconds, though still long compared to the Zeeman frequency or the typical time to manipulate a spin with microwave pulses. Longer spin coherence is expected in two-dimensional systems patterned into quantum dots, but relatively small dots will be required. Data from dots with a lithographic size of 400 nm do not yet show longer spin coherence.  相似文献   

9.
The use of spin-polarization analysis in electron spectroscopy of magnetic and non-magnetic surfaces is demonstrated with a few examples. The existence and properties of spin-dependent transmission of electrons through the solid-vacuum interface is shown. The influence of surface reconstruction of Pt(110) on spin polarization and energy distribution curves in photoemission with circularly polarized light is studied. The polarization of secondary electrons from Fe(110) is observed to depend on the spin polarization of primary electrons at low energies. The temperature dependence of the exchange splitting in Ni is studied by means of spin-polarized electron energy loss spectroscopy and found to be at variance with the assumptions of the Stoner-Wohlfarth theory.  相似文献   

10.
When electrons are interacting with a ferromagnetic material, their spin-polarization vector is expected to move. This spin motion, comprising an azimuthal precession and a polar rotation about the magnetization direction of the ferromagnet, has been studied in spin-polarized electron scattering experiments both in transmission and reflection geometry. In this review we show that electron-spin motion can be considered as a new tool to study ferromagnetic films and surfaces and we discuss its application to a number of different problems: (a) the transmission of spin-polarized electrons across ferromagnetic films, (b) the influence of spin-dependent gaps in the electronic band structure on the spin motion in reflection geometry, (c) interference experiments with spin-polarized electrons and (d) the influence of lattice relaxations in ferromagnetic films on the spin motion.  相似文献   

11.
We investigate the shot noise of electron transport through an Aharonov-Casher ring subject to the Rashba spin-orbit coupling (SOC). Analytic expressions for the coefficients of reflection and transmission are derived by using the Griffith boundary conditions. For this kind of SOC, the ballistic transport of electrons can be analyzed as two independent spin channels, and both of them have the same transmission and reflection coefficients. The dependences of shot noise and Landauer-Biittiker conductance on controllable factors, including the strength of Rashba SOC, the asymmetrical angle of lead-connection positions, the radius of the rings, and the wave vector (or energy) of the incident Fermi electrons, are explicitly described by some new combined parameters. The ways that the shot noise and conductance vary with Rashba SOC and with asymmetrical angle are demonstrated by numerical simulations, respectively. It is revealed that the shot noise reaches its maximum for the particular situation of half transmission and half reflection and zero shot noise occurs at conductance maxima.  相似文献   

12.
Combining an extended Julliere model with transfer matrix method, we study the spin-polarized resonant tunneling in GaMnAs/AlAs/GaAs/AlAs/GaMnAs double barrier ferromagnetic semiconductor (FS) tunnel junctions with the arbitrary angle θ between the magnetic directions of two FS's. It is shown that tunneling magnetoresistance (TMR) ratio linearly varies with sin2(θ/2). We also demonstrate that for the heavy and light holes, the properties of the spin-polarized resonant tunneling are obviously different. The present results are expected to be instructive for manufacturing the relevant semiconductor spintronic devices.  相似文献   

13.
Using the standard Hamiltonian of the BCS theory, we show that in an ensemble of interacting fermions with the spin 1/2 there exist coherent states |NC〉, which nullify the Hamiltonian of the interparticle interaction (scattering). These states have an analogy with the well-known in quantum optics the coherent population trapping (CPT) effect. The structure of these CPT-like states corresponds to Cooper pairs with the total spin S = 1. The found states have a huge degree of degeneracy and carry a macroscopic magnetic moment, that allows us to construct a new model of the magnetism connected with the delocalized electrons in metals (conductors). A principal possibility to apply the obtained results to the superfluid 3He is also demonstrated.  相似文献   

14.
We have developed a technique capable of measuring the tunneling current into both localized and conducting states in a 2D electron system (2DES). The method yields I-V characteristics for tunneling with no distortions arising from low 2D in-plane conductivity. We have used the technique to determine the pseudogap energy spectrum for electron tunneling into and out of a 2D system and, further, we have demonstrated that such tunneling measurements reveal spin relaxation times within the 2DEG. Pseudogap: In a 2DEG in perpendicular magnetic field, a pseudogap develops in the tunneling density of states at the Fermi energy. We resolve a linear energy dependence of this pseudogap at low excitations. The slopes of this linear gap are strongly field dependent. No existing theory predicts the observed behavior. Spin relaxation: We explore the characteristics of equilibrium tunneling of electrons from a 3D electrode into a high mobility 2DES. For most 2D Landau level filling factors, we find that electrons tunnel with a single, well-defined tunneling rate. However, for spin-polarized quantum Hall states (ν=1, 3 and 1/3) tunneling occurs at two distinct rates that differ by up to two orders of magnitude. The dependence of the two rates on temperature and tunnel barrier thickness suggests that slow in-plane spin relaxation creates a bottleneck for tunneling of electrons.  相似文献   

15.
By the first-principles calculations,most studies indicated that the (11102)-CoO2 termination of LaCoO3 cannot be stabilized,which disagrees with the experimental observation.Besides the crystal structure,we found that the spin states of Co3+ ions could affect surface stability,which previously were not well considered.By examining the different states of Co3+ ions in hexagonal-phase LaCoO3,including low spin,intermediate spin,and high spin states,the surface grand potentials of these facets are calculated and compared.The results show that the spin states of Co3+ ions have an important influence on stability of the LaCoO3 facets.Different from the previous results,the stability diagrams demonstrate that the (11102)-CoO2 termination can stably exist under O-rich condition,which can get an agreement with the experimental ones.Furthermore,the surface oxygen vacancy formation energies (EOv) of stable facets are computed in different spin states.The EOv of these possible exposed terminations strongly depend on the spin state of Co3+ ions:in particular,the EOv of the HS states is lower than that of other spin states.This indicates that one can tune the properties of LaCoO3 by directly tuning the spin states of Co3+ ions.  相似文献   

16.
Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n−1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure.  相似文献   

17.
《Physics letters. A》2014,378(28-29):1945-1951
B-doping induced spin polarization in zigzag-edged graphene nanoribbons is studied by density functional calculations by two kinds of doping: (1) doping only one B atom in the central scattering region; (2) periodically doping in the whole system. It is found that even a single B dopant may cause large spin polarization in the current, which can be understood by the breaking of spin-degeneracy due to the impurity atoms and the Fermi level shift resulting from the hole-donating of the B atoms. More interestingly, 100% spin polarized current under finite bias is obtained through periodical doping although the transmission function around the Fermi level is not 100% spin polarized. This can be interpreted by a rigid shift model of the special band structures of the left and right leads in this case. It demonstrates that only transmission function at equilibrium conditions is not sufficient in the study of electron transport, but current should be considered in certain situations.  相似文献   

18.
杜坚  李春光  秦芳 《物理学报》2009,58(5):3448-3455
研究了与铁磁/半导体/铁磁结构相关的双量子环自旋输运的规律,研究结果表明:总磁通为零条件下,铁磁电极磁化方向反平行时,双量子环与单量子环相比提高了自旋电子透射概率的平均值.铁磁电极磁化方向平行时,双量子环对提高自旋向下电子平均透射概率的效果更明显;双量子环受到Rashba自旋轨道耦合作用影响时,自旋电子的平均透射概率明显高于单量子环,即使再加上外加磁场的影响,透射概率较高这一特征依然存在;双量子环所含的δ势垒具有阻碍自旋电子输运的作用,随δ势垒强度Z的增大透射概率 关键词: 双量子环 Rashba自旋轨道耦合 透射概率 δ势垒')" href="#">δ势垒  相似文献   

19.
We study the spin polarized currents generation in a magnetic (ferromagnetic/ferromagnetic) tunnel junction by means of adiabatic quantum pumping. Using a scattering matrix approach, it is shown that a pure spin current can be pumped from one ferromagnetic lead into the adjacent one by adiabatic modulation of the magnetization and the height of the barrier at the interface in absence of external bias voltage. We numerically study the characteristic features of the pure spin current and discuss its behavior for realistic values of the parameters. We show that the generated pure spin current is robust with respect to the variation of the magnetization strength, a very important feature for a realistic device, and that the proposed device can operate close to the optimal pumping regime. An experimental realization of a pure spin current injector is also discussed.  相似文献   

20.
The phenomena of spin tunneling and spin torque transfer between magnetic layers of a tunnel spin-valve setup under weak and strong field emissions of spin-polarized electrons are considered. Bifurcational features of changes in the macrospin states under the impact of a tunnel current are discussed for varying directions of the spin-polarization vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号