首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starch is regarded as one of the most promising biopolymers to replace the fossil resources. However, due to the poor mechanical properties, high sensitivity to humidity, and low barrier property, the development of starch‐based materials has been limited. In this study, they improved the mechanical and barrier properties of starch film with reduced graphene oxide (RGO) modified by sodium dodecyl benzene sulfonate (SDBS). The hydrophilia of modified RGO (r‐RGO) was improved and result in a good dispersion in oxidized starch (OS) matrix. The tensile strength of the r‐RGO‐4/OS film increased to 58.5 MPa which was more than three times of the OS film (17.2 MPa). Besides, both the water vapor and oxygen barrier properties of r‐RGO/OS film were improved greatly compared with OS and GO/OS films. Moreover, the r‐RGO/OS film could protect against UV light effectively due to its lightproof performance. In conclusion, the r‐RGO/OS composite film has great potential applications in packaging industry. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44910.  相似文献   

2.
We demonstrate a simple approach of using highly alkaline starch solutions to obtain films with high flexibility and improved water resistance. Extensive studies have been done to develop films from starch, primarily for food applications. However, films developed from starch are brittle and generally chemical modifications or plasticizers are used to improve the flexibility and other properties of starch films. Such modifications make starch expensive, decrease biodegradability, and affect the morphology and subsequent processing of starch. In this research, we have prepared films using starch solutions at pH between 3 and 11. Starch solutions having different pHs were made into films and the tensile, thermal properties, and resistance to water were studied. It was found that preparing starch with pH 11 solution imparts high flexibility without any apparent physical damage. Films prepared under strong acidic and alkaline conditions also had considerably reduced hydrophilicity, which is required for food packaging and other applications. The films prepared at alkaline pH show nearly 50% reduction in water sorption and an increase in elongation. The films obtained from alkaline pH are flexible and water resistant and can potentially be used to develop various bioproducts. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48563.  相似文献   

3.
This article reports on using cassava starch nanocrystals (CSN) to strengthen nanocomposite films from the same matrix. CSN were obtained by acid hydrolysis. Nanocomposite (starch:glycerol:CSN/4.0:2.1:1–10 wt %) were processed by casting and the films were characterized. The CSN (30% yield) presented minimally clustered globular forms, 45 to 178 nm in diameter, with a crystalline index of 46%. Water‐vapor transmission rate, tensile strength, and elastic modulus of the films were influenced by the linear effect of CSN concentration (R 2 = ?0.92, 0.91, 0.99, respectively), while the other parameters resulted in quadratic relations |0.69–0.96|. The film with 10% CSN presented a 43% reduction in water vapor permeability, associated with increases of 200% in traction resistance, and 616% in elasticity modulus, compared with the control. The hydrolysis of part of the cassava starch into nanocrystals resulted in a reduction in permeability and nano reinforcement of the films due to good compatibility and interaction between both, without influencing biodegradability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45311.  相似文献   

4.
The effects of saturated fatty acids at a concentration of 1.5% on the mechanical and barrier properties of starch‐based films were evaluated in films prepared with two concentrations of glycerol, 20 and 25%. The water vapor permeability (WVP) was determined at three ranges of relative humidity, RH, (0–33, 33–64 and 64–97%). In all cases, an increase in WVP values was observed with increasing RH. SEM images showed a more homogeneous and compact structure in the films with caproic and lauric acids. The films with fatty acids showed higher elongation and maximum stress, and they had Young's modulus values close to those of the control; thus, the addition of fatty acids did not impair the mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
将木薯淀粉进行H2SO4酸解后制备淀粉纳米晶。用X射线衍射、电子显微镜、红外光谱仪(FTIR)和差示扫描量热仪(DSC)表征酸解后淀粉颗粒的结构,并对其热稳定性进行研究。研究结果表明,木薯淀粉经H2SO4酸解后,淀粉颗粒粒径减小至50~100nm之间;结晶度比原淀粉提高了41%。  相似文献   

6.
淀粉基降解塑料的研究进展   总被引:5,自引:0,他引:5  
简述了淀粉基塑料的分类及其发展,介绍了国内外在这一领域的最新进展与研究成果,指出了淀粉塑料目前存在的问题以及今后发展方向。  相似文献   

7.
Bamboo fiber (BF)-reinforced starch/polypropylene (PP) composites were prepared by extrusion and injection molding methods. The mechanical and thermal properties and water absorption were evaluated by different methods. Moreover, composite samples were subjected to biodegradation through soil burial test and microbes medium degradation. Different stages of biodegradation were investigated by weight loss, attenuated total reflection Fourier transformed infrared spectroscopy, differential scanning calorimeter, and scanning electron microscope. It was found that contents of BF and starch resin had a significant influence on the properties of the composites. With more content of BF, the composite exhibited a better flexural property and biodegradation. A distinct decrease of weight loss and mechanical properties indicated the degradation caused by the microbes. After biodegradation, thermal stability of the composites decreased while the crystallinity of PP increased. The results prove that the composites more easily tend to be degraded and assimilated by microbes. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48694.  相似文献   

8.
The aim of this study was to improve the mechanical properties of thermoplastic starch foams prepared from cassava starch blended with natural rubber latex by reactive blending. Potassium persulfate was used as an initiator for graft copolymerization between the starch and natural rubber during baking. The starch–natural rubber graft copolymer (starch‐g‐NR copolymer) was successfully produced during both suspension and melt blending based on 1H‐NMR and FTIR characterization. Natural rubber increased the flexural modulus of starch/natural rubber foams without potassium persulfate, thus indicating the compatibility of the blends. The starch‐g‐NR copolymer, acting as a compatibilizing agent, enhanced the impact strength of foams, but it did not improve the flexural modulus. This may be due to the potassium persulfate decreasing the molecular weight of the natural rubber. Relative humidity also played an important role on the mechanical properties. Foams became more ductile at higher relative humidities. Since foam density increased with an increasing natural rubber content, the specific impact strength was also considered. A soil burial test showed that the cassava starch foams and foams containing 15 pph of natural rubber were fully biodegraded within 8 and 18 weeks, respectively. The starch‐g‐NR copolymer delayed biodegradation of foams and foams containing high natural rubber content, i.e., 35 pph, showed a low ability to be biodegraded. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
将环氧改性聚酰胺(EPA)与热塑性玉米淀粉复合后采用浇铸法制备出新型增强生物降解复合膜,研究了EPA对复合膜结晶性能、交联程度、力学性能以及生物降解性能的影响。结果表明,玉米淀粉与EPA、烷基烯酮二聚体及丙三醇复合后,结晶程度明显下降。当EPA质量分数为21 62%时,复合膜的交联度高达45 77%,且复合膜残留物中非EPA成分的质量分数也达到24 15%;复合膜的干态拉伸强度和断裂伸长率分别可以高于12 0MPa和45 0%,湿态拉伸强度和断裂伸长率则分别可以达到5 40MPa和30 0%以上。EPA的添加降低了复合膜的生物降解性能。  相似文献   

10.
In this study, cellophane (PT) multilayer films were prepared by coating with different thickness of poly(εcaprolactone) (PCL) and chitosan (CH), and its effects on barrier and mechanical properties were evaluated. It was shown that the PCL/PT/PCL and PCL/CH/PT/CH/PCL multilayer films exhibit much better water vapor barrier than PT, and these films still keep the high oxygen barrier. And the barrier properties of multilayer film were improved with the increase of the thickness of coating materials. The Young's modulus and tensile strength of PT multilayer film were slightly decreased, and their elongations at break were increased by coating. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1805–1811, 2013  相似文献   

11.
Epoxidized natural rubbers (ENR‐25 and ENR‐45) were prepared using the performic epoxidation method. Two‐component (ENR–cassava starch) and three‐component (ENR–NR–cassava starch) blends were prepared. ENR‐25 and ENR‐45 were blended with various quantities of gelatinized cassava starch in the latex state. The pure ENR exhibited lower shear stress and shear viscosity than those of the blends with cassava starch. Furthermore, the shear stress and shear viscosity were increased with an increase in the cassava starch concentration. The chemical interaction between the epoxide groups in the ENR and the hydroxyl groups in the cassava starch molecules might be the reason for the increasing trends of the shear stress and shear viscosity. The blends are classified as compatible blends because of the strong chemical bonding between different phases. SEM micrographs were used to clarify the compatibility. Power law behavior with pluglike flow profiles was observed for all sets of ENR–NR–cassava starch blends. Very low power law index values (<0.34) and highly pseudoplastic fluid behavior were also observed. The log additive rule was applied to plots of zero shear viscosity (consistency index) and the shear viscosity versus the concentration of ENR‐25. Positive deviation blending was observed, which indicates compatible blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1752–1762, 2004  相似文献   

12.
Graft copolymers of different grafting levels were synthesised by the free radical initiated reaction of cassava starch with acrylamide in presence of ceric ammonium nitrate. The viscosity properties of the native granular starch and the grafted starches were determined using a Rapid visco analyzer (RVA) and rheological properties by frequency sweep test under different conditions using a rheometer. Some of the grafted starches exhibited significantly higher and some others exhibited drastically reduced peak viscosity values irrespective of the percentage grafting. All the grafted starches exhibited very good viscosity stability as evidenced from the highly reduced breakdown and higher final viscosity values in comparison to native cassava starch. Thermal analysis of the pure granular cassava starch and grafted starches was carried out using a differential scanning calorimetry (DSC) and thermogravimetry. DSC studies showed that in comparison to native starch, the grafted starches showed lower temperatures of transition. The thermal stability of cassava starch was enhanced by grafting as observed from the thermogravimetric data. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
通过添加二氧化硅(SiO2)到木薯淀粉(TPS)中,采用熔融共混法制备热塑性TPS/SiO2复合材料,研究复合材料的吸水性、生物降解性和熔融行为。结果表明,随着SiO2添加量的增加,TPS吸水率呈下降趋势,且添加经过硅烷偶联剂(KH550)表面处理后的纳米SiO2比未处理的吸水率低。随着生物降解时间的增加,TPS/SiO2复合材料的生物降解率提高;随着SiO2用量的增加,TPS的生物降解率呈下降变化,且SiO2表面处理后能明显提高TPS的生物降解性。随着SiO2用量的增加,TPS的熔融峰增加,且添加SiO2表面处理后的TPS熔融峰比未经表面处理的SiO2高。  相似文献   

14.
The purpose of this work was to improve the properties of the starch/poly(vinyl alcohol) (PVA) films with nano silicon dioxide (nano SiO2). Starch/PVA/nano‐SiO2 biodegradable blend films were prepared by a solution casting method. The characteristics of the films were assessed by Fourier Transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X‐ray photoelectron spectroscopy (XPS). The results obtained in this study indicated that the nano‐SiO2 particles were dispersed evenly within the starch/PVA coating and an intermolecular hydrogen bond and a strong chemical bond C? O? Si were formed in the nano‐SiO2 and starch/PVA. That the blending of starch, PVA and nano‐SiO2 particles led to uniform starch/PVA/nano‐SiO2 blend films with better mechanical properties. In addition, the nano‐SiO2 particles can improve the water resistance and light transmission of the blend films. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
木薯淀粉/天然橡胶复合材料制备工艺研究   总被引:1,自引:0,他引:1  
方海雄  符新 《化学工程师》2007,21(8):1-2,58
以木薯淀粉和天然胶乳为主要原料,将木薯淀粉和天然胶乳共混共沉制备木薯淀粉/NR复合材料。研究了制备工艺对复合材料力学性能的影响。结果表明:当木薯淀粉浓度为20%,搅拌速度为450r·min~(-1),搅拌时间为30min和木薯淀粉用量为20份时,木薯淀粉/NR复合材料具有较好的力学性能。  相似文献   

16.
The aliphatic polyester Bionolle 3020 was combined with lignocellulosic fibers, namely, flax, hemp, and wood, to produce biodegradable composite materials. The effect of two fiber surface treatments, acetylation and propionylation, and the addition of maleic anhydride (MA)‐grafted Bionolle 3001 as a compatibilizer on the fiber/matrix interfacial adhesion was studied. The compatibilizer was synthesized through a MA grafting reaction in the presence of dicumyl peroxide as an initiator. The composites' mechanical properties, water absorption, fracture morphology (scanning electron microscopy), and biodegradation were evaluated. Both the fiber treatments and the compatibilizer incorporation significantly improved the composites' tensile strength, whereas an important reduction in the water absorption was found with the addition of treated fibers. Moreover, fiber incorporation into the matrix increased its biodegradation rate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4703–4710, 2006  相似文献   

17.
研究木薯淀粉与瓜尔胶、木薯淀粉与阴离子瓜尔胶的复合膜,淀粉含量为复合基质量的100%、80%、60%、40%和20%制成复合膜,对膜的性质用红外、热重以及扫描电镜分别表征,对膜的力学性能、水蒸气透过率和吸水性能测试。分别以强度和伸长率为指标得出最优的复合膜配比。以强度为指标的最优复合膜成分:淀粉为80%,瓜尔胶为20%,得到样本1-2与原淀粉膜相比强度提高50%,伸长率下降30%,水蒸气透过率下降15.8%,吸水率几乎没有变化。以伸长率为指标的最优膜成分:淀粉80%,阴离子瓜尔胶20%,得到样本2-1与原木薯淀粉膜相比伸长率提高了142%,但强度降低了22%,水蒸气透过率下降了5.4%,吸水性降低了5.5%。成膜条件为:淀粉糊化温度为95℃,反应时间0.5 h,烘干温度为50℃。  相似文献   

18.
Chitosan‐methyl cellulose based films which incorporatate vanillin as an antimicrobial agent and polyethylene glycol 400 (PEG) as a plasticizer were developed in this study. The effects of vanillin and plasticizer concentration on mechanical, barrier, optical, and thermal properties of chitosan‐methyl cellulose film were evaluated. When the vanillin concentration was increased at a given PEG level, film flexibility decreased while tensile strength increased slightly. Vanillin increased the barrier to oxygen but not water vapor. Increasing vanillin content resulted in less transparency and a more yellowish tint. The bulky nature of vanillin reduced film crystallization. When PEG concentration was increased at a given vanillin level, it resulted in greater film flexibility but reduced film strength. Water vapor permeability (WVP) and oxygen permeability (OP) increased with increase in PEG content. PEG contributed less to the opacity, yellowness, and crystallization of the film than did vanillin. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
以聚乙烯醇(Polyvinyl alcohol,PVA)、淀粉(Starch,ST)为原料,凤仙透骨草提取物(Impatiens balsamina extract,IBE)为抗菌剂,通过共混法制备抗菌复合膜,通过FTIR、XRD、SEM和热重分析对复合膜的形貌和结构进行表征及对力学、光学、阻隔、抑菌等性能测试分析。结果表明,IBE与PVA/ST基膜复合良好,制备的PVA/ST/IBE抗菌复合膜对大肠杆菌、白色葡萄球菌和枯草杆菌具有良好的抑菌作用,抑菌性能随着IBE含量的增加而逐渐提高;同时具有良好的力学强度,IBE添加量为12.5 mL的复合膜拉伸强度达到22.97±0.68 MPa,断裂伸长率相比PVA/ST基膜提升了79.22%;透明度有所下降,透光率下降了11.90%;氧气阻隔性能良好,氧气透过系数为1.771±0.196×10-12 cm3.cm/(cm2.s.Pa),在环保包装、食品保鲜等领域具有广阔的应用前景。  相似文献   

20.
改性淀粉/LLDPE共混体系生物降解材料性能的研究   总被引:1,自引:0,他引:1  
将自制接枝改性淀粉与LLDPE、玉米淀粉以及另外两种相容剂进行共混。通过对共混体系的形态结构、力学性能、流变性能、热性能以及对共混物薄膜的生物降解性能等的研究说明:复合相容剂MAH-g-PE+LA-g-starch的加入改善了淀粉和LLDPE的相容性,使得共混物体系具有适宜的拉伸强度及断裂伸长率;LLDPE/淀粉/(MAH-g-PE+LA-g-starch)共混物薄膜具有很好的生物降解性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号