首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aimed at improving the energy output performance of the Microthermal Photovoltaic (MTPV) system, it is necessary to optimize the structure of the micro combustor. In this paper, micro combustor with in-line pin fins arrays (MCIPF) and micro combustor with both end-line pin fins arrays (MCEPF) were presented to realize the efficient combustion and heat transfer enhancement, and the influence of inlet velocity, equivalent ratio, and materials on thermal performance was investigated. The results showed that pin fins embedding is beneficial to improving combustion, and the combustion efficiency of MCIPF and MCEPF reaches 98.5% and 98.7%, which is significantly higher than that of the conventional cylindrical combustor (MCC). However, with the increase of inlet velocity from 8 m/s to 14 m/s, MCIPF exhibits the highest external wall temperature with a range of (1302–1386 K), while MCEPF maintains the best temperature uniformity. As the inlet velocity increases to 10 m/s, the external wall temperature and temperature uniformity reach the optimum. Besides, under the conditions of different equivalence ratios, both external wall temperature and heat flux increases first and then decreases, meanwhile the temperature uniformity of MCEPF is significantly improved compared with that of MCIPF, they all exhibit the highest external wall temperature with an equivalence ratio of 1.1, and the thermal performance is greatly enhanced. By comparing the heat transfer performance of combustors with different materials based on MCEPF, it is interesting to find that the application of high thermal conductivity materials can not only increase the external wall temperature, but also improve the temperature uniformity. Therefore, materials with high thermal conductivity such as Aluminum, Red Copper and Silicon Carbide should be selected for application in micro combustors and their components. The current work provides a new design method for the enhanced heat transfer of the micro combustor.  相似文献   

2.
A numerical study on CH4 and air premixed combustion inside a small tube with a temperature gradient at the wall was undertaken to investigate the effects of inlet velocity, equivalence ratio and combustor size on combustion characteristics. The simulation results show that the inlet velocity has a significant influence on the reaction zone, and the flame front shifts downstream as the inlet velocity increases. The results also show that, the inlet velocity has no obvious effects on the flame temperature. The highest flame temperature is obtained if the equivalence ratio is set to 1. It is disclosed that the combustor size strongly influences the combustion characteristics. The smaller the combustor size is, the more difficult it is to maintain the steady combustion. The smallest combustor size that the stable flame can be sustained is determined mainly by the wall temperature of the micro-combustor under the given conditions. The higher the wall temperature is, the smaller the smallest combustor size. Therefore increasing wall temperature is an effective way to realize flame stabilization for a given combustor size.  相似文献   

3.
Micro-scale combustion is facing the problems of ignition difficulty, combustion instability, and low combustion efficiency. Therefore, it is necessary to improve the combustion characteristics in micro-combustor to expand the application range of micro-combustor. Focusing on the problem of the weak preheating effect of the micro cavity-combustor, the guide vanes are constructed to enhance the combustion near the cavity, and further combine with the bluff body to enhance combustion. The combustion characteristics of three types of cavity combustors with guide vanes (CCGV), bluff body (CCBB), bluff body, and guide vanes (CCGB) respectively are compared and analyzed under different inlet velocities (8–32 m/s), equivalence ratios (0.6–1.4), and wall materials (quartz glass, steel, and SiC). Results show that the guide vanes can greatly improve the combustion intensity near the cavity and improve the combustion stability of the cavity combustor. The combustion efficiency of CCGV and CCGB are increased by 43.04% and 85.96% respectively than CCBB when the inlet velocity is 32 m/s. The reaction heat of CCGV is 244.5 W when inlet velocity is 32 m/s, which is 0.55 times and 1.57 times that of CCGV and CCBB, respectively. The temperature uniformity and mean temperature of the outer wall of CCGV and CCGB both are better than that of CCGB. The combustion efficiency of CCGB is the highest among three combustors under the same equivalence ratio, especially when the equivalence ratio is less than 1. The reaction intensity in the cavity of the CCGV and CCGB with steel wall material is highest than that of the combustor with the other two wall materials. Wall materials with high thermal conductivity have a better preheating effect. Compared with quartz as the wall material, the mean temperature of the external wall of CCGV and CCGB using steel and silicon carbide as the wall material both increase by more than 130 K, and the wall heat loss both increase by more than 50%.  相似文献   

4.
Targeted at improving the combustion stability and enhancing heat transfer in micro combustor, the combustion characteristics and thermal performance of micro combustor with pin fin arrays are numerically investigated by employing detail H2/O2 reaction mechanism. It is shown that the micro combustor with staggered pin fin arrays exhibits the highest average temperature and heat flux of external wall, while the micro combustor with in-line pin fin arrays displays the most uniform temperature distribution of external wall. When the equivalence ratio is 1.1, all micro combustors exhibit the highest mean temperature and heat flux of external wall. The micro combustor materials with high thermal conductivity can not only improve the average temperature and heat flux of external wall, but also enhance heat transfer to the upstream which can preheat the mixed gas. Therefore, the materials with high thermal conductivity, such as red copper and aluminum, can make up for the nonuniform temperature distribution of micro combustor with staggered pin fin arrays, so as to realize uniform high heat flux output of external wall.  相似文献   

5.
In the present work, the effects of inlet velocity and channel height (H0 = 0.6 mm, 1.0 mm and 1.4 mm) on the mixing performance, flame stability limit and combustion efficiency of H2 and air in a 2D planar micro-combustor with a separating plate were studied numerically. The results demonstrate that improved mixing can be achieved with a decrease in inlet velocity and channel height. Moreover, the flame blow-off limit is the largest for a micro-combustor with H0 = 0.6 mm; the flame becomes inclined at a high velocity and the direction varies with the inlet velocity. Furthermore, a micro-combustor with a medium height (H0 = 1.0 mm) can achieve the largest blowout limit among the three cases. Finally, for identical inlet velocities, the combustion efficiency increases with decreasing combustor height. In summary, these findings can provide a guideline for the optimal design of such micro-combustors.  相似文献   

6.
Micro-combustor is a portable power device that can provide energy efficiently, heat recirculating is considered to be an important factor affecting the combustion process. For enhancing the heat recirculating and improving the combustion stability, we proposed a heat-recirculating micro-combustor embedded with porous media, and the numerical simulation was carried out by CFD software. In this paper, the effect of porous media materials, thickness and inlet conditions (equivalence ratio, inlet velocity) on the temperature distribution and exhaust species in the micro combustor are investigated. The results showed that compared with the micro combustor without embedded porous media (MCNPM), micro-combustor embedded with porous media (MCEPM) can improve the temperature uniformity distribution in the radial direction and strengthen the preheating capacity. However, it is found that the embedding thickness of porous media should be reasonably arranged. Setting the thickness of porous media to 15 mm, the combustor can obtain excellent comprehensive capacity of steady combustion and heat recirculating. Compared the thermal performance of Al2O3, SiC, and ZrO2 porous media materials, indicating that SiC due to its strong thermal conductivity, its combustion stabilization and heat recirculating capacity are obviously better than that of Al2O3 and ZrO2. With the porous media embedded in the micro combustor, the combustion has a tempering limit of more than 10 m/s, and the flame is blown out of the porous media area over 100 m/s. The reasonable equivalence ratio of CH4/air combustion should be controlled within the range of 0.1–0.5, and “super-enthalpy combustion” can be realized.  相似文献   

7.
As it is important to achieve higher combustion efficiency for applications of micro-cylindrical combustor, the multi-factor impact mechanism on the combustion efficiency of a hydrogen-fuelled micro-cylindrical combustor is investigated in this work. Firstly, six factors such as hydrogen/air equivalence ratio, inlet velocity, inlet temperature, wall thermal conductivity, wall emissivity and convective heat transfer coefficient of outer wall and five levels of each factor are determined. Orthogonal design table L25(56) is introduced to arrange cases. Secondly, grey relational analysis is adopted to investigate the effects of the six factors on combustion efficiency. Finally, the results of grey relational analysis are validated by analysis of variance. Based on grey relational analysis and analysis of variance, it is determined that the impact ranking from the largest to the smallest is hydrogen/air equivalence ratio, inlet velocity and inlet temperature, followed by the other three factors. The impact of wall thermal conductivity, convective heat transfer coefficient of outer wall and wall emissivity is considered to be equal due to their difference of impact on combustion efficiency is very small. This work provides us significant reference for optimizing combustion efficiency of a hydrogen-fuelled micro-cylindrical combustor.  相似文献   

8.
由于能量密度的极大优势,应用燃烧释放碳氢燃料的化学能并转化为电能或者机械能的微动力系统有巨大的发展潜力和广阔的应用前景。微热光电系统是其中的一种,而微燃烧室是该系统的核心部件。在实验验证的基础上,对带有双环形翅片燃烧室内的燃烧过程进行了数值模拟。结果表明,双环形翅片能增强微燃烧室内混合气体的湍流扰动,改善燃烧状况,有效地提高燃烧效率。  相似文献   

9.
Combustion characteristics of H2/air mixture in a micro-combustor with wall cavities were investigated numerically. The effects of inlet velocity, equivalence ratio, and the length–depth ratio of the cavity were studied. The results show that at a high enough velocity the flame splits in the middle which leads to a large amount of fuel leakage and a sharp decrease in the conversion rate of hydrogen. Meanwhile, the flame splits at the inner wall which gives rise to two high temperature regions and double temperature peaks at outer wall. Moreover, the flame-splitting limit is extended at a higher equivalence ratio due to a more intensive reaction. Furthermore, the flame-splitting limit increases for a larger length–depth ratio of the cavity, whereas the wall temperature level decreases. Therefore, excessive large length–depth ratios are not beneficial for this type of micro-combustors if the combustor walls are used as heat sources of thermoelectric or thermal photovoltaic devices.  相似文献   

10.
In order to illuminate heat recirculation effect on catalytic combustion stability and further improve energy conversion efficiency in meso‐combustor, the catalytic combustion characteristics of the combustor with/without preheating channels are numerically studied at steady conditions. It is found that methane conversion rate and combustion efficiency increases by 2% to 3% and approximately 9% in the heat recirculation meso‐combustor, indicating that heat recirculation effect facilitates more complete combustion of methane and medium components. Preheating channels show positive effects on improving combustion stability in the heat recirculation meso‐combustor. On one hand, preheating channels facilitate heat recirculation effect, and heat recirculation rate exceeds 10% for all cases and reaches 31.8% with an inlet velocity of 0.5 m/s, leading to significant increment of methane‐specific enthalpy at the preheating channel outlet. On the other hand, Rh(s)/O(s) ratios of catalytic surface and catalytic surface temperature in main reaction zone are enlarged by the preheating channels, facilitating methane adsorption at catalytic surface. Specially, most of fuels are consumed in a shorter distance with higher methane conversion speed, which brings benefits to promote combustion efficiency and may be helpful to inhibit the combustion instability in heat recirculation meso‐combustors.  相似文献   

11.
为了进一步优化微燃烧室的设计,以最大化提高微燃烧室的能量转换效率及微热光电系统的整体工作效率,在前期工作的基础上设计了不同多孔介质材料及喷嘴/燃烧室内径比的多孔介质微燃烧室.通过实验验证,针对多孔介质微燃烧室内的氢氧预混燃烧进行了数值模拟计算,研究结果表明,多孔介质材料,喷嘴/燃烧室内径比对微燃烧室内的微尺度燃烧有重要影响,微燃烧室在多孔介质材料为SiC, 喷嘴/燃烧室内径比为0.27时燃烧效率最高,有利于提高微热光电系统的整体效率.  相似文献   

12.
《Applied Thermal Engineering》2007,27(5-6):1089-1095
For a micro-thermophotovoltaic (TPV) energy conversion device, high surface to volume ratio in the micro-combustor provides a great potential to achieve high surface radiation power output per unit energy input. This work investigated experimentally the effects of three major parameters on micro-combustion, namely hydrogen to oxygen mixing ratio, nozzle to combustor diameter ratio, and wall thickness to combustor diameter ratio. The results show that the high average wall temperature can be achieved at slightly oxygen rich mixing ratios. Nozzle to combustor diameter ratio affects both the magnitude and uniformity of wall temperature distribution. The newly designed thin wall combustor which yields a reduction of axial heat conduction loss is able to increase wall temperature more than 150 K. Optimized design of these parameters will have significant impact on the enhancement of radiation heat output in micro-TPV energy conversion.  相似文献   

13.
多孔介质对微热光电系统燃烧室性能的影响   总被引:1,自引:1,他引:0  
微燃烧室获得高且均匀的壁面温度分布对于微热光电系统是非常有利的.将多孔介质引入微燃烧室中进行燃烧试验,得到了有无多孔介质两种情况下不同混合气流量、不同氢氧体积比的燃烧状况及壁面温度分布.多孔介质具有较强的吸热及蓄热能力,能有效地改善传热过程,改变壁面温度分布.对于特定的燃烧室,当氢氧体积比为1.5∶1、混合气流量为1.83×10-5m3/s时,所得到的壁面温度分布基本满足微热光电系统的要求.  相似文献   

14.
Combustion characteristics of methane/air in a micro-combustor with a regular triangular pyramid bluff body were numerically investigated. Results reveal that the blow-off limit of the micro-combustor with a regular triangular pyramid bluff body is 2.4 times of that in the micro-combustor without bluff body. With the increase of inlet velocity, the recirculation zone expands and preferential transport effect behind the bluff body is intensified. Therefore, the local equivalence ratio in the recirculation zone increases when Φ = 0.8, but the growth trend of local equivalence ratio is not obvious when the inlet velocity exceeds 10 m/s. When Φ < 1.0, adding small amount of hydrogen into gas mixture can speed up the significant elementary reaction, leading to an increase of methane conversion. It's found that both the methane conversion rate and the temperature behind the bluff body reaches the highest when blockage ratio increase to 0.22.  相似文献   

15.
Combustion characteristics of lean hydrogen/air mixture in a planar micro-channel with a bluff body were investigated experimentally and numerically. Effects of the inlet velocity and equivalence ratio on the blow-off limit, combustion efficiency and exhaust gas temperature were examined. The results show that the blow-off limit is greatly extended as compared with that of the micro-combustor without a bluff body. Moreover, the blow-off limit increases as the equivalence ratio is increased from 0.4 to 0.6. Furthermore, with the increase of inlet velocity, the flame front is prolonged and becomes narrower, and the high temperature segment of outer wall shifts downstream. In addition, the combustion efficiency and exhaust gas temperature increase first and then decrease with the increase of the inlet velocity. Finally, comparatively high combustion efficiency can be maintained over the whole combustible velocity range at a moderate equivalence ratio.  相似文献   

16.
The combustion characteristics of the swirl micro combustor with twisted vanes (Swirl-MC-TV) and the conventional micro combustor (Conventional-MC) are investigated and compared under different inlet velocities (8–40 m/s), wall materials (quartz, steel, and SiC), and equivalence ratios (0.6–1.4). The results show that the larger area of recirculation zones and the stronger recirculation intensity are the key factors for Swirl-MC-TV to stable combustion. When the inlet velocity is 40 m/s, compared with the Conventional-MC, the wall heat loss of the Swirl-MC-TV is reduced by 15.9%, and the reaction heat and combustion efficiency of the Swirl-MC-TV are increased by 17.5% and 5.9%, respectively. When the wall materials of steel and SiC, combustors have a better preheating effect and higher combustion intensity. When the equivalence ratio is greater than 0.6, the wall heat loss of Swirl-MC-TV is larger but the combustion efficiency and the reaction intensity are still higher than Conventional-MC.  相似文献   

17.
A new micro-combustor configuration for a micro fuel-cell reformer integrated with a micro-evaporator is studied experimentally and computationally. The micro-combustor as a heat source is designed for a 10–15 W micro-reformer using the steam reforming method. In order to satisfy the primary requirements for designing a micro-combustor integrated with a micro-evaporator, i.e., stable burning in a small confinement and maximum heat transfer through a wall, the present micro-combustor is a simply cylinder, which is easy to fabricate, but is two-staged (expanding downstream) to control ignition and stable burning. The aspect ratio and wall thickness of the micro-combustor substantially affect ignition and thermal characteristics. For optimized design conditions, a pre-mixed micro-flame is easily ignited in the expanded second-stage combustor, moves into the smaller first-stage combustor, and finally is stabilized therein. The measured and predicted temperature distributions across the micro-combustor walls indicate that heat generated in the micro-combustor is well transferred. Thus, the present micro-combustor configuration can be applied to practical micro-reformers integrated with a micro-evaporator for use with fuel cells.  相似文献   

18.
针对带有催化肋片的微燃烧室内部的氢氧预混合燃烧过程,利用CFD计算软件建立数值模型,在实验验证的基础上进行了模拟计算。结果表明:不同流速下,燃烧室内布置催化肋片能提高燃烧室外壁面平均温度以及燃烧效率。在低流速时催化肋片布置越靠近入口,表面催化反应对气相反应的抑制程度越大;肋片位置越靠近出口,燃烧室外壁面平均温度越高。在高流速下,催化肋片位置越靠近出口,表面催化反应对气相反应的促进作用越明显,使得燃烧室外壁面温度分布越均匀、燃烧室出口截面温度越高。  相似文献   

19.
Micro-combustor design plays an important role in determining the performances of Micro Thermo-Photovoltaic (MTPV) systems. In this work, 3D numerical simulations are conducted on a hydrogen-fuelled micro-combustor with two ribs to achieve a more uniform but higher wall temperature. The effects of: 1) the shape of the ribs, 2) the axial location, 3) the height, 4) the inlet velocity and 5) the equivalence ratio are evaluated. The numerical model is built with a standard k-ε turbulence model and EDC chemical reaction model (eddy dissipation concept). These models are validated before being applied to study 3 different ribs with a cross-sectional view of: 1) rectangular, 2) Ո-shaped and 3) Ս-shaped (defined basing on the bottom rib). It is found that the combustor with 2 ribs performs generally better than that of a single-rib one under the same flow conditions. The optimum design is found to be the Ս-shaped ribs, since the mean temperature of the outer wall is increased by 25.4 K in comparison with other designs. In addition, the mean temperature is observed to increase with increased inlet velocity. However, it decreases slightly with increased rib height. Further analysis is conducted on entropy production due to chemical reactions and heat transfer processes. It is found that the chemical reaction and the conduction heat transfer contribute 70% and 15% of the total entropy generation respectively. Furthermore, the thermodynamic 2nd-law efficiency remains in the range of 46%–51%, as the equivalence ratio varies from 0.8 to 1.2. This study provides physical insights on the optimum design of a hydrogen-fuelled micro-combustor.  相似文献   

20.
The combustion characteristics of the micro combustor with a convex platform were simulated and the effects of the height of the convex platform and the inlet velocity on the combustion process were analyzed. The results show that the setting of convex platform can significantly increase the maximum velocity and reduce the outlet velocity. When the height of the boss continues to increase, the maximum velocity is more significant, but has little effect on the outlet velocity. At the same time, the increasing height of the convex platform increases, the turbulent kinetic energy and reduces the intensity of combustion on the axis. However further increase in the height does not reduce the effect significantly. The fuel conversion rate increases significantly, but the velocity decreases. In the micro combustor with a convex platform, increasing the inlet velocity increases the axial temperature, the fuel conversion rate decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号