首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to prepare CoB catalysts supported on raw bentonite (CoB/bentonite) and Na-exchanged bentonite (CoB/Na-bentonite) by the impregnation and chemical reduction method. The prepared catalysts were characterized using X-ray diffractometry (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The activities of the catalysts were tested in the hydrolysis reaction of sodium borohydride (NaBH4) in a semi-batch system. The volume of the evolved hydrogen gas was determined by a water displacement method. The effects of catalyst amount, NaOH (a base stabilizer) concentration, NaBH4 concentration and solution temperature on the hydrogen generation rate were investigated. The maximum hydrogen generation rates were determined as 921.94 mL/min.gcat for CoB/bentonite and 1601.45 mL/min.gcat for CoB/Na-bentonite when the 5 wt % NaBH4 and 10 wt % NaOH solutions were used at 50 °C. The activation energies (Ea) of the hydrolysis reaction over CoB/bentonite and CoB/Na-bentonite were determined as 55.76 and 56.61 kJ/mol, respectively.  相似文献   

2.
文章通过化学镀法成功制备了Ni-P催化剂,并考察了施镀温度以及还原剂浓度对硼氢化钠水解制氢性能的影响。结果表明:试验中Ni-P催化剂的最优制备条件为施镀温度为50℃,还原剂浓度为0.8 mol/L;此条件下制备的Ni-P催化剂催化硼氢化钠水解放氢的速率为639.7 m L/(min·g),活化能为44.5 k J/mol。  相似文献   

3.
Hydrogen production via chemical processes has gained great attention in recent years. In this study, Co-based complex catalyst obtained by adsorption of Co metal to Amberlite IRC-748 resin and Diaion CR11 were tested for hydrogen production from alkaline NaBH4 via hydrolysis process. Their catalytic activity and microstructure were investigated. Process parameters affecting the catalytic activity, such as NaOH concentration, Co percentage and catalyst amount, as well as NaBH4 concentration and temperature were investigated. Furthermore, characteristics of these catalysts were carried out via SEM, XRD and FT-IR analysis. Hydrogen production rates equal to 211 and 221 ml min−1 gcat−1 could be obtained with Amberlite IRC-748 resin and Diaion CR11 Co based complex catalysts, respectively. The activation energies of the catalytic hydrolysis reaction of NaBH4 were calculated as 46.9 and 59.42 kJ mol−1 for Amberlite IRC-748 resin and Diaion CR11 based catalysts respectively kJ mol−1 from the system consisting of 3% Co, 10 wt% NaBH4 and 7 wt% NaOH as well as 50 mg catalyst dosage. It can be concluded that Co-based resins as catalysts for hydrogen production is an effective alternative to other catalysts having higher rate.  相似文献   

4.
The introduction of magnetism into a catalyst can greatly optimize its separation performance. In the present work, a kind of magnetically separable catalysts for promoting NaBH4 hydrolysis have been fabricated by anchoring cobalt nanoparticles on magnetic dendritic KCC-1 nanospheres composed of magnetic Fe3O4 core and fibrous shell. The fabricated catalysts were characterized with various characterization methods, including absorption spectroscopy (AAS), scanning electron microscopy (SEM), high-resolution transmission electronic microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM), and Fourier transform infrared (FT-IR), etc. This kind of catalysts exhibit high catalytic activity for promoting the hydrolysis of NaBH4 under alkaline conditions, giving a hydrogen generation rate and activation energy of 3.83 L min−1 gCo−1 (30 °C) and 53.63 kJ mol−1, respectively. After used for 5 cycles, the catalyst showed 36.5% catalytic activity reserved. Most importantly, the magnetism of the catalyst made it easily separated and recycled from the solution after the reaction completed. The development of this kind of catalysts could provide a promising option for catalyzing NaBH4 hydrolysis for portable hydrogen production from.  相似文献   

5.
Carbon-supported Co–B catalysts with various loading contents were prepared by impregnation–chemical reduction method. The XRD, ICP, SEM and TEM analyses revealed that the as-prepared Co–B catalysts were in amorphous form with the composition of Co2.0–3.3B and the carbon-supported Co–B catalysts had a good dispersion and coating condition. The hydrogen generation measurement showed that the average hydrogen generation rate at was for unsupported Co–B catalyst, while it was 1268.1, 1482.1 and for the carbon-supported catalysts with the Co–B loading of 30.0, 15.6 and 7.44 wt%, respectively. The activation energy of the 30.0 wt% Co–B loading catalyst for the hydrogen generation reaction was measured to be . Compared with the unsupported Co–B catalyst, the as-prepared carbon-supported catalysts presented higher activity for hydrolysis of NaBH4 aqueous solution, indicating their potential application in mobile hydrogen production for fuel cells.  相似文献   

6.
Low cost transition metal catalysts with high performance are attractive for the development of on-board hydrogen generation systems by catalytic hydrolysis of sodium borohydride (NaBH4) in fuel cell fields. In this study, hydrogen production from alkaline NaBH4 via hydrolysis process over carbon-supported cobalt catalysts was studied. The catalytic activity of the supported cobalt catalyst was found to be highly dependent on the calcination temperatures. The hydrogen generation rate increases with calcination temperatures in the range of 200–400 °C, but a high calcination temperature above 500 °C led to markedly decreased activity. X-ray diffraction patterns reveal that the catalysts experience phase transition from amorphous Co–B to crystalline cobalt hydroxide with increase in calcination temperatures. The reaction performance is also dependent on the concentration of NaBH4, and the hydrogen generation rate increases for lower NaBH4 concentrations and decreases after reaching a maximum at 10 wt.% of NaBH4.  相似文献   

7.
Cyclic life of catalyst for hydrolysis of sodium borohydride is one of the key issues, which hinder commercialization of hydrogen generation from sodium borohydride (NaBH4) solution. This paper is aimed at promoting the cyclic life of Ru/Ni foam catalysts by employing an electro-deposition method. The effect of hydrolysis parameters on hydrolysis of sodium borohydride was studied for improving the catalytic performance. It is found that the hydrogen generation rate (HGR) of the hydrolysis reaction catalyzed by Ru/Ni foam catalyst can reach as high as 23.03 L min?1 g?1 (Ru). The Ru/Ni foam catalyst shows good catalytic activity after a cycleability test of 100 cycles by rinsing with HCl, which is considered as more effective method than rinsing with water for recovering the performance of Ru/Ni foam catalyst.  相似文献   

8.
For the first time, the process of hydrogen evolution from ferrosilicon 75 using sodium hydroxide solution has been investigated as a function of temperature using a combination of X‐ray photoelectron spectroscopy, X‐ray diffraction and physical measurements. Ferrosilicon 75, a mixture of silicon (~50 wt.%) and iron disilicide (~50 wt.%), has been shown to produce hydrogen by the action of sodium hydroxide solution on the silicon only, with the iron disilicide acting in the role of spectator/protector species for the silicon. Neither iron disilicide alone nor ferrosilicon 45, which does not contain a pure metallic silicon phase, was found to generate hydrogen under similar reaction conditions, further indicating that the presence of a pure metallic silicon phase is essential for hydrogen generation. As the iron disilicide acts as a diluent for the active silicon, it is hypothesized that this would result in a slower release of hydrogen than that which would be obtained from the reaction of silicon alone, which may be useful for applications which require a long‐term, sustained release of hydrogen. A hydrogen yield of 462.5 mL/g and a maximum hydrogen generation rate of 83 mL/min g were obtained within 10 min of reaction with 40 wt.% NaOH at 348 K. © 2017 The Authors. International Journal of Energy Research Published by John Wiley & Sons Ltd.  相似文献   

9.
Ammonia borane (AB) is an intriguing molecular crystal with extremely high hydrogen density. In the present study, by using a modified electroless plating method, we prepare a robust supported cobalt–molybdenum–boron (Co–Mo–B)/nickel (Ni) foam catalyst that can effectively promote the hydrogen release from AB aqueous solution at ambient temperatures. The catalytic activity of the catalyst towards the hydrolysis reaction of AB can be further improved by appropriate calcination treatment. In an effort to understand the effect of calcination treatment on the catalytic activity of the catalyst, combined structural/phase analyses of the series of catalyst samples have been carried out. Using the catalyst that is calcined at optimized condition, a detailed study of the catalytic hydrolysis kinetics of AB is carried out. It is found that the hydrolysis of AB in the presence of Co–Mo–B/Ni foam catalyst follows first-order kinetics with respect to AB concentration and catalyst amount, respectively. The apparent activation energy of the catalyzed hydrolysis reaction is determined to be 44.3 kJ mol−1, which compares favorably with the literature results for using other non-noble transition metal catalysts.  相似文献   

10.
Hydrogen production from alkaline sodium borohydride (NaBH4) solution via hydrolysis process over activated carbon supported cobalt catalysts is studied. Activated carbons are used in their original form and after liquid phase oxidation with HNO3. The changes in surface functional groups of the activated carbon are detected by FTIR spectroscopy. The effects of HNO3 oxidation on the properties of the activated carbon and the resulting catalyst performance are investigated. FTIR analysis reveals that the oxidative treatment leads to the formation of various functional groups on the surface of the activated carbon. Cobalt catalysts supported on the modified activated carbon are found to exhibit higher activity and stability.  相似文献   

11.
In this work, a spherical spider web-like structure RuNi/Ni foam catalyst was prepared for hydrogen evaluation from sodium borohydride (NaBH4) by a combination of electroless plating and electroplating. Microstructure, surface morphology, surface area and elemental composition of the RuNi/Ni foam catalyst were analyzed by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM-EDS and X-ray Photoelectron Spectroscopy (XPS), Brunauere-Emmette-Teller method (BET, AS-1C-VP), respectively. The influences of RuNi with different molar ratios, NaOH concentration, NaBH4 concentration, and solution temperature on the hydrogen production rate were investigated in this paper. The results showed that the RuNi metals were arrayed densely and uniformly on the surface of Ni foam. The average hydrogen production rate is 360 mL min −1 g−1 in 20 wt % of NaBH4, 1 wt% of NaOH at 30 °C in the presence of the RuNi/Ni foam catalysts. The calculated activation energy was 39.96 kJ mol−1 for hydrogen production from sodium borohydride using the RuNi/Ni foam catalyst.  相似文献   

12.
Polymer template-Ru composite (Ru/IR-120) catalyst was prepared using a simple and fast method for generating hydrogen from an aqueous alkaline NaBH4 solution. The hydrogen generation rate was determined as a function of solution temperature, NaBH4 concentration, and NaOH (a base-stabilizer) concentration. The maximum hydrogen generation rate reached 132 ml min−1 g−1 catalyst at 298 K, using a Ru/IR-120 catalyst that contained only 1 wt.% Ru. The catalyst exhibits a quick response and good durability during the hydrolysis of alkaline NaBH4 solution. The activation energy for the hydrogen generation reaction was determined to be 49.72 kJ mol−1.  相似文献   

13.
Hydrogen generation from tablets of sodium borohydride with chlorides of nickel and cobalt was studied. The nickel catalysts were shown to be less active in the borohydride hydrolysis than the cobalt catalysts. One of the reasons for the lower activity of the nickel catalyst was the presence of hydrogen on its surface, which hampered the adsorption of reactants. The addition of cobalt to the nickel catalyst increases the hydrogen generation rate. This is due to the introduction of active metal with low adsorption capacity for hydrogen and the higher dispersion of the active component.  相似文献   

14.
Cu-Schiff base complex which we previously synthesized (Kilinc et al., 2012) is supported on Al2O3. The prepared catalyst is characterized by using SEM, XRD, BET, and FT-IR methods. And Al2O3-supported complex is used as a catalyst in NaBH4 hydrolysis reaction for hydrogen generation. NaBH4 hydrolysis reactions are investigated depending on the concentration of NaBH4 and NaOH, temperature, percentage of Cu complex, and amount of catalyst. Maximum reaction rates are 44,453.33 and 57,410.00 mL H2/g.cat.min at 30°C and 50°C, respectively. The activation energy of NaBH4 hydrolysis reaction is found as 225,775 kJ.mol?1. All the experimental results and literature comparisons show that Al2O3-supported Cu-Schiff base complex is a very effective catalyst in NaBH4 hydrolysis for H2 generation.  相似文献   

15.
The gravimetric hydrogen storage efficiency of silicon has been widely reported as 14 wt.%, suggesting that this material should be an excellent hydrogen generation source for portable applications. However, in the case of the reaction of silicon powder with 20 wt.% sodium hydroxide solution at 50 °C, the observed production of hydrogen fails to realize these high expectations unless a large excess of basic solution is used during the reaction, rendering the use of silicon in such systems uncompetitive compared with chemical hydride based technologies. By investigating the molar ratio of water:silicon from a large excess of water towards the stoichiometric 2:1 ratio dictated by the reaction equation, this study shows that for the reaction of silicon in 20 wt.% sodium hydroxide solution, the quantity of hydrogen produced decreases as the 2:1 ratio expected from the equation for the reaction is approached. Furthermore, in order to reach 80% of the theoretical efficacy, a molar ratio of 20:1, or 12 mL of 20 wt.% sodium hydroxide solution per gram of silicon, would be required. These results suggest that the actual gravimetric hydrogen storage capacity is less than 1%, casting doubts as to whether the use of silicon for hydrogen generation in real systems would be possible. © 2016 The Authors. International Journal of Energy Research published by John Wiley & Sons Ltd.  相似文献   

16.
Currently, recycling waste aluminum materials are of significant importance for reducing environmental pollution and improving economic efficiency. In this paper, aluminum (Al) powder prepared from waste Al cans with magnetic grinding method was directly used in hydrolysis for hydrogen generation. The prepared waste Al cans powder was characterized by scanning electron microscope (SEM), X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET), atomic absorption spectrophotometer (AAS), and density analysis. The results showed that grinding time, NaOH concentration, and reaction temperature affected the hydrolysis rate and hydrogen yield markedly; 1 g of Al cans powder with grinding time of 40 minutes could produce 1296‐mL hydrogen within 6 minutes under the optimal reaction conditions. The reaction kinetics study demonstrated that the hydrolysis of Al cans powder is kinetically controlled while hydrolysis of Al cans flakes is diffusively controlled. The hydrolysis mechanism was also predicted based on the experimental results and kinetic study. The generation of hydrogen from hydrolysis of waste Al cans powder with low‐concentrated alkaline solution is a promising way to diminish environmental pollution and instrument corrosion.  相似文献   

17.
Micro-proton exchange membrane fuel cells are considered to be the next generation power sources for micro-scale power applications, but onboard hydrogen storage and generation with high energy density at the small scale is still a technical barrier. This paper introduces a hydrogen generation method based on an onboard hydride fuel and a byproduct water recovery mechanism for micro-hydrogen PEM fuel cells. The water recovery is carried out by water diffusion from the more humid cathode side to the less humid anode side through the proton exchange membrane. The micro-fuel cells based on this water recovery method were constructed and tested. The results demonstrate that the relative humidity has a significant affect on the fuel cell performance as well as the opening area on the cover layer, the type of hydrides, and the thickness of the Nafion membrane also can affect the fuel cell performance. A 10 mm3 prototype water recovery micro-fuel cell has been built and tested, and the device has produced a maximum power density of 104 W L−1 and a maximum energy density of 313 W h L−1.  相似文献   

18.
Nowadays, there is still no suitable method to store large amounts of energy. Hydrogen can be stored physically in carbon nanotubes or chemically in the form of hydride. In this study, sodium borohydride (NaBH4) was used as the source of hydrogen. However, an inexpensive and useful catalyst (Co–Cr–B/CeO2) was synthesized using the NaBH4 reduction method and its property was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), x-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) measurements. The optimized Co–Cr–B/CeO2 catalyst exhibited an excellent hydrogen generation rate (9182 mLgmetal−1min−1) and low activation energy (35.52 kJ mol−1). The strong catalytic performance of the Co–Cr–B/CeO2 catalyst is thought to be based on the synergistic effect between multimetallic nanoparticles and the effective charge transfer interactions between the metal and the support material.  相似文献   

19.
We used the chemical vapor deposition method to prepare dandelion-like CNTs-Ni foam composite carrier, and then the electroless plating method was used to deposit Co-P nanoparticles on the CNTs of the CNTs-Ni foam. The CNTs-Ni foam and Co-P/CNTs-Ni foam were characterized by BET, SEM, XRD, XPS, and EDS. The results showed that CNTs were uniformly and densely grown in situ on the surface of Ni foam and were further successfully coated with Co-P nanoparticles. The Co-P/CNTs-Ni foam catalysts still maintained the dandelion-like structure and reached a maximum hydrogen production rate of 2430 mL min−1 g−1 at 25 °C. Furthermore, the Co-P/CNTs-Ni foam catalysts also exhibit a remarkable cycling performance and low activation energy (49.94 kJ mol−1) for the methanolysis of sodium borohydride.  相似文献   

20.
A highly stable photoelectrocatalytic electrode made of CdS-modified short, robust, and highly-ordered TiO2 nanotube array for efficient visible-light hydrogen generation was prepared via sonoelectrochemical anodization and sonoelectrochemical deposition method. The short nanotube electrode possesses excellent charge separation and transfer properties, while the sonoelectrochemical deposition method improves the combination between CdS and TiO2 nanotubes, as well as the dispersion of CdS nanoparticles. Different characterization techniques were used to study the nanocomposite electrode. UV-vis absorption and photoelectrochemical measurements proved that the CdS coating extends the visible spectrum absorption and the solar spectrum-induced photocurrent response. Comparing the photoactivity of the CdS/TiO2 electrode obtained using sonoelectrochemical deposition method with others that synthesized using plain electrochemical deposition, the current density of the former electrode is ∼1.2 times higher that of the latter when biased at 0.5 V. A ∼7-fold enhancement in photocurrent response is obtained using the sonoelectrochemically fabricated CdS/TiO2 electrode in comparison with the pure TiO2 nanotube electrode. Under AM1.5 illumination the composite photoelectrode generate hydrogen at a rate of 30.3 μmol h−1 cm−2, nearly 13 times higher than that of pure titania nanotube electrode. Recycle experiments demonstrated the excellent stability and reliability of CdS/TiO2 electrode prepared by sonoelectrochemical deposition. This composite electrode, with its strong mechanical stability and excellent combination of CdS and TiO2 nanotubes, offers promising applications in visible-light-driven renewable energy generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号