首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
A group-labeled graph is a graph whose vertices and edges have been assigned labels from some abelian group. The weight of a subgraph of a group-labeled graph is the sum of the labels of the vertices and edges in the subgraph. A group-labeled graph is said to be balanced if the weight of every cycle in the graph is zero. We give a characterization of balanced group-labeled graphs that generalizes the known characterizations of balanced signed graphs and consistent marked graphs. We count the number of distinct balanced labellings of a graph by a finite abelian group Γ and show that this number depends only on the order of Γ and not its structure. We show that all balanced labellings of a graph can be obtained from the all-zero labeling using simple operations. Finally, we give a new constructive characterization of consistent marked graphs and markable graphs, that is, graphs that have a consistent marking with at least one negative vertex.  相似文献   

2.
3.
Polar graphs are a common generalization of bipartite, cobipartite, and split graphs. They are defined by the existence of a certain partition of vertices, which is NP-complete to decide for general graphs. It has been recently proved that for cographs, the existence of such a partition can be characterized by finitely many forbidden subgraphs, and hence tested in polynomial time. In this paper we address the question of polarity of chordal graphs, arguing that this is in essence a question of colourability, and hence chordal graphs are a natural restriction. We observe that there is no finite forbidden subgraph characterization of polarity in chordal graphs; nevertheless we present a polynomial time algorithm for polarity of chordal graphs. We focus on a special case of polarity (called monopolarity) which turns out to be the central concept for our algorithms. For the case of monopolar graphs, we illustrate the structure of all minimal obstructions; it turns out that they can all be described by a certain graph grammar, permitting our monopolarity algorithm to be cast as a certifying algorithm.  相似文献   

4.
We investigate families of graphs and graphons (graph limits) that are determined by a finite number of prescribed subgraph densities. Our main focus is the case when the family contains only one element, i.e., a unique structure is forced by finitely many subgraph densities. Generalizing results of Turán, Erd?s-Simonovits and Chung-Graham-Wilson, we construct numerous finitely forcible graphons. Most of these fall into two categories: one type has an algebraic structure and the other type has an iterated (fractal-like) structure. We also give some necessary conditions for forcibility, which imply that finitely forcible graphons are “rare”, and exhibit simple and explicit non-forcible graphons.  相似文献   

5.
By Petersen's theorem, a bridgeless cubic graph has a 2‐factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3‐edge‐connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that this is in some sense best possible by constructing an infinite family of 3‐edge‐connected graphs in which every spanning even subgraph has a 5‐cycle as a component. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 37–47, 2009  相似文献   

6.
Two non-isomorphic graphs are twins if each is isomorphic to a subgraph of the other. We prove that a rayless graph has either infinitely many twins or none.  相似文献   

7.
We show that a graph G has no houses and no holes if and only if for every connected induced subgraph H of G and every vertex in H, either the vertex is adjacent to all the other vertices in H, or it forms a 2-pair of H with some other vertex in H. As a consequence, there is a simple linear time algorithm to find a 2-pair in HH-free graphs. We also note that the class of Meyniel graphs admits an analogous characterization.  相似文献   

8.
9.
Thomassen formulated the following conjecture: Every 3-connected cubic graph has a red–blue vertex coloring such that the blue subgraph has maximum degree 1 (that is, it consists of a matching and some isolated vertices) and the red subgraph has minimum degree at least 1 and contains no 3-edge path. We prove the conjecture for Generalized Petersen graphs.We indicate that a coloring with the same properties might exist for any subcubic graph. We confirm this statement for all subcubic trees.  相似文献   

10.
We prove a decomposition theorem for the class of triangle‐free graphs that do not contain a subdivision of the complete graph on four vertices as an induced subgraph. We prove that every graph of girth at least five in this class is 3‐colorable.  相似文献   

11.
Planar drawings of clustered graphs are considered. We introduce the notion of completely connected clustered graphs, i.e., hierarchically clustered graphs that have the property that not only every cluster but also each complement of a cluster induces a connected subgraph. As a main result, we prove that a completely connected clustered graph is c-planar if and only if the underlying graph is planar. Further, we investigate the influence of the root of the inclusion tree to the choice of the outer face of the underlying graph and vice versa.  相似文献   

12.
Neumann-Lara  Victor  Wilson  Richard G. 《Order》1998,15(1):35-50
A topology on the vertex set of a comparability graph G is said to be compatible (respectively, weakly compatible) with G if each induced subgraph (respectively, each finite induced subgraph) is topologically connected if and only it it is graph-connected; a weakly compatible topology on the vertex set of a graph completely determines the graph structure. We consider here the problem of deciding whether or not a comparability graph has a compact compatible or weakly compatible topology and in the case of graphs with small cycles, hence in the case of trees, we give a characterization.  相似文献   

13.
A graph is balanced if its clique-matrix contains no edge–vertex incidence matrix of an odd chordless cycle as a submatrix. While a forbidden induced subgraph characterization of balanced graphs is known, there is no such characterization by minimal forbidden induced subgraphs. In this work, we provide minimal forbidden induced subgraph characterizations of balanced graphs restricted to graphs that belong to one of the following graph classes: complements of bipartite graphs, line graphs of multigraphs, and complements of line graphs of multigraphs. These characterizations lead to linear-time recognition algorithms for balanced graphs within the same three graph classes.  相似文献   

14.
Given a graph and a length function defined on its edge-set, the Traveling Salesman Problem can be described as the problem of finding a family of edges (an edge may be chosen several times) which forms a spanning Eulerian subgraph of minimum length. In this paper we characterize those graphs for which the convex hull of all solutions is given by the nonnegativity constraints and the classical cut constraints. This characterization is given in terms of excluded minors. A constructive characterization is also given which uses a small number of basic graphs.  相似文献   

15.
A graph is polar if the vertex set can be partitioned into A and B in such a way that the subgraph induced by A is a complete multipartite graph and the subgraph induced by B is a disjoint union of cliques. Polar graphs are a common generalization of bipartite, cobipartite, and split graphs. However, recognizing polar graphs is an NP-complete problem in general. This led to the study of the polarity of special classes of graphs such as cographs and chordal graphs, cf. Ekim et al. (2008) [7] and [5]. In this paper, we study the polarity of line graphs and call a graph line-polar if its line graph is polar. We characterize line-polar bipartite graphs in terms of forbidden subgraphs. This answers a question raised in the fist reference mentioned above. Our characterization has already been used to develop a linear time algorithm for recognizing line-polar bipartite graphs, cf. Ekim (submitted for publication) [6].  相似文献   

16.
Meakin  John  Wang  Zhengpan 《Semigroup Forum》2021,102(1):217-234
Semigroup Forum - We study the relationship between the graph inverse semigroups of two graphs when there is a directed immersion between the graphs and we provide structural information about...  相似文献   

17.
An efficient dominating set (or perfect code) in a graph is a set of vertices the closed neighborhoods of which partition the graph's vertex set. We introduce graphs that are hereditary efficiently dominatable in that sense that every induced subgraph of the graph contains an efficient dominating set. We prove a decomposition theorem for (bull, fork, C4)‐free graphs, based on which we characterize, in terms of forbidden induced subgraphs, the class of hereditary efficiently dominatable graphs. We also give a decomposition theorem for hereditary efficiently dominatable graphs and examine some algorithmic aspects of such graphs. In particular, we give a polynomial time algorithm for finding an efficient dominating set (if one exists) in a class of graphs properly containing the class of hereditary efficiently dominatable graphs by reducing the problem to the maximum weight independent set problem in claw‐free graphs.  相似文献   

18.
We present GraphScan, a novel method for detecting arbitrarily shaped connected clusters in graph or network data. Given a graph structure, data observed at each node, and a score function defining the anomalousness of a set of nodes, GraphScan can efficiently and exactly identify the most anomalous (highest-scoring) connected subgraph. Kulldorff’s spatial scan, which searches over circles consisting of a center location and its k ? 1 nearest neighbors, has been extended to include connectivity constraints by FlexScan. However, FlexScan performs an exhaustive search over connected subsets and is computationally infeasible for k > 30. Alternatively, the upper level set (ULS) scan scales well to large graphs but is not guaranteed to find the highest-scoring subset. We demonstrate that GraphScan is able to scale to graphs an order of magnitude larger than FlexScan, while guaranteeing that the highest-scoring subgraph will be identified. We evaluate GraphScan, Kulldorff’s spatial scan (searching over circles) and ULS in two different settings of public health surveillance. The first examines detection power using simulated disease outbreaks injected into real-world Emergency Department data. GraphScan improved detection power by identifying connected, irregularly shaped spatial clusters while requiring less than 4.3 sec of computation time per day of data. The second scenario uses contaminant plumes spreading through a water distribution system to evaluate the spatial accuracy of the methods. GraphScan improved spatial accuracy using data generated from noisy, binary sensors in the network while requiring less than 0.22 sec of computation time per hour of data.  相似文献   

19.
Can a directed graph be completed to a directed line graph? If possible, how many arcs must be added? In this paper we address the above questions characterizing partial directed line (PDL) graphs, i.e., partial subgraph of directed line graphs. We show that for such class of graphs a forbidden configuration criterion and a Krausz's like theorem are equivalent characterizations. Furthermore, the latter leads to a recognition algorithm that requires O(m) worst case time, where m is the number of arcs in the graph. Given a partial line digraph, our characterization allows us to find a minimum completion to a directed line graph within the same time bound.The class of PDL graphs properly contains the class of directed line graphs, characterized in [J. Blazewicz, A. Hertz, D. Kobler, D. de Werra, On some properties of DNA graphs, Discrete Appl. Math. 98(1-2) (1999) 1-19], hence our results generalize those already known for directed line graphs. In the undirected case, we show that finding a minimum line graph edge completion is NP-hard, while the problem of deciding whether or not an undirected graph is a partial graph of a simple line graph is trivial.  相似文献   

20.
Graph minors play an important role in graph theory. The focus of this paper is on immersion minors and their relationship to planarity. In general, planar graphs can have non-planar immersion minors. This paper shows that by placing a simple restriction on the immersion-minor operations, all immersion minors of a planar graph are planar. This then allows one to easily obtain a characterization of planar graphs using immersion minors. A dual form of this characterization, as well as an extension to binary matroids, are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号