首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new aromatic poly(amide–imide)s (PAIs) was synthesized by triphenyl phosphite‐activated polycondensation of the diimide–diacid, 1,4‐bis(trimellitimido)‐2,3,5,6‐tetramethylbenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The PAIs had inherent viscosities of 0.82–2.43 dL/g. The diimide–diacid monomer (I) was prepared from 2,3,5,6‐tetramethyl‐p‐phenylenediamine with trimellitic anhydride (TMA). Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including NMP, N,N‐dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF). Transparent, flexible, and tough films of these polymers could be cast from DMAc solutions. Their cast films had tensile strengths ranging from 80 to 95 MPa, elongation at break from 10 to 45%, and initial modulus from 2.01 to 2.50 GPa. The 10% weight loss temperatures of these polymers were above 510°C in nitrogen. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1162–1170, 2000  相似文献   

2.
A new type of tetraimide‐dicarboxylic acid (I) was synthesized starting from the ring‐opening addition of m‐aminobenzoic acid (m‐ABA), 4,4′‐oxydiphthalic anhydride (ODPA) and 4,4′‐methylenedianiline (MDA) at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I. A series of soluble and light‐coloured poly(amide–imide–imide)s (IIIa–j) was prepared by triphenyl phosphite‐activated polycondensation from the tetraimide‐diacid I with various aromatic diamines (IIa–j). All films cast from DMAc had cutoff wavelengths shorter than 400 nm (376–393 nm) and had b* values between 20.46 and 40.67; these polymers were much lighter in colour than those of the corresponding trimellitimide series. All polymers were readily soluble in a variety of organic solvents such as NMP, N,N‐dimethylacetamide, dimethyl sulfoxide, and even in the less polar m‐cresol and pyridine. Compared with those of corresponding ODPA–MDA polyimide, the solubilities of poly(amide–imide–imide)s IIIa–j were greatly improved. Polymers IIIa–j afforded tough, transparent, and flexible films, which had tensile strengths ranging from 82 to 105 MPa, elongations at break from 8 to 14%, and initial moduli from 2.0 to 2.2 GPa. The glass transition temperature of polymers were recorded at 255–288 °C. They had 10% weight loss at a temperature above 540 °C and left more than 60% residue even at 800 °C in nitrogen. © 2002 Society of Chemical Industry  相似文献   

3.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 1,4‐bis(trimellitimido)‐2,5‐dichlorobenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.88–1.27 dL g−1. The diimide‐diacid monomer (I) was prepared from 2,5‐dichloro‐p‐phenylenediamine with trimellitic anhydride. All the resulting polymers were amorphous and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Cast films had tensile strengths ranging from 92 to 127 MPa, elongations at break from 4 to 24%, and initial moduli from 2.59 to 3.65 GPa. The glass transition temperatures of these polymers were in the range of 256°–317°C, and the 10% weight loss temperatures were above 430°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 271–278, 1999  相似文献   

4.
Eight new flame‐retardant poly(amide‐imide)s with high inherent viscosities containing phosphine oxide moieties in main chain were synthesized from the polycondensation reaction of N,N′‐(3,3′‐diphenylphenylphosphine oxide) bistrimellitimide diacid chloride 7, with eight ;aromatic diamine 8a–h by two different methods such as solution and microwave‐assisted polycondensation. Results showed that the microwave‐assisted polycondensation by using a domestic microwave oven proceeded rapidly, compared with solution polycondensation and were completed within about 10–12 min. The resulting poly(amide‐imide)s 9a–h showed high thermal stability and flame‐retardant properties. All of the obtained polymers were fully characterized by means of elemental analysis, viscosity measurements, solubility test, and FTIR spectroscopy. Thermal properties of the PAIs 9a–h were investigated by using thermal gravimetric analysis (TGA), derivative thermogravimetric analysis (DTG), and differential scanning calorimetry (DSC). Char yield measurements at 600°C demonstrated that incorporating phosphine oxide moieties in polymer backbone markedly improves their flame retardancy. All of the earlier polymers were soluble at room temperature in various organic solvents such as NMP, DMF, DMSO, DMAc, and concentrated sulfuric acid. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4263–4269, 2006  相似文献   

5.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 2,5‐bis(trimellitimido)chlorobenzene (I) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.76–1.42 dL g−1. The diimide‐diacid monomer (I) was prepared from 2‐chloro‐p‐phenylenediamine with trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Their cast films had tensile strengths ranging from 74 to 95 MPa, elongations at break from 7 to 11%, and initial moduli from 1.38 to 3.25 GPa. The glass transition temperatures of these polymers were in the range of 233°–260°C, and the 10% weight loss temperatures were above 450°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1691–1701, 1999  相似文献   

6.
A CF3‐containing diamine, 4,4′‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzophenone ( 2 ), was synthesized from 4,4′‐dihydroxybenzophenone and 2‐chloro‐5‐nitrobenzotrifluoride. Imide‐containing diacids ( 3 and 5Ba – 5Bg ) were prepared by the condensation reaction of aromatic diamines and trimellitic anhydride. Then, two series of novel soluble aromatic poly(amide imide)s (PAIs; 6Aa – 6Ak and 6Ba – 6Bg ) were synthesized from a diamine ( 4Aa – 4Ak or 2 ) with the imide‐containing diacids ( 3 and 5Ba – 5Bg ) via direct polycondensation with triphenyl phosphate and pyridine. The aromatic PAIs had inherent viscosities of 0.74–1.76 dL/g. All of the synthesized polymers showed excellent solubility in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide (DMAc), and afforded transparent and tough films by DMAc solvent casting. These polymer films had tensile strengths of 90–113 MPa, elongations at break of 8–15%, and initial moduli of 2.0–2.9 GPa. The glass‐transition temperatures of the aromatic PAIs were in the range 242–279°C. They had 10% weight losses at temperatures above 500°C and showed excellent thermal stabilities. The 6B series exhibited less coloring and showed lower yellowness index values than the corresponding 6A series. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3641–3653, 2006  相似文献   

7.
A series of new alternative poly(amide–imide)s (PAIs, IIIa–j ) was synthesized by the direct polycondensation of 1,4‐bis(4‐aminophenoxy)naphthalene (1,4‐BAPON) with various aromatic diimide–diacids. These polymers were obtained in quantitative yields with inherent viscosities of 0.71–1.03 dL/g. Except for IIIa, most of the polymers were soluble in aprotic polar solvents such as NMP, DMAc, DMF, and DMSO and could be solution‐cast into transparent, flexible, and tough films. The glass transition temperatures of these PAIs were in the range of 235–280°C. Thermogravimetric analyses established that these polymers were fairly stable up to 450°C, and 10% weight loss temperatures were recorded in the range of 520–569°C under nitrogen and 506–566°C under an air atmosphere. Compared with the PAIs with the 1,4‐bis(4‐aminophenoxy)benzene structure (series IV), the solubility of series III was better than that of series IV. Series III also exhibited lower crystallinity and better processability than those of series IV. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 217–225, 2000  相似文献   

8.
Water soluble diamine amic acids (DAAs) were synthesized by reacting aliphatic diamines with pyromellitic dianhydride. Poly(amide–amic acid)s (PAAs) were prepared by interfacial polycondensation of DAAs in aqueous sodium hydroxide solution with isophthaloyl chloride in dichloromethane. Poly(amide–imide)s (PAIs) containing alternating (amide–amide)–(imide–imide) sequences were obtained by thermal cycloimidization of the PAA films at 175°C for 4 h in a forced air woven. The PAIs were readily soluble in polar aprotic solvents such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, and N‐methyl‐2‐pyrrolidone. The inherent viscosities of the polymers are in the range of 0.97–1.7 dL/g. The polymers were characterized by IR, 1H nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). Thin film composite membranes containing PAA ultrathin barrier layer were prepared by in situ interfacial polycondensation of DAA in water with trimesoyl chloride or isophthaloyl chloride in hexane on the surface of a porous polysulfone membrane. The membranes were characterized for water permeability and for the separation of NaCl and Na2SO4. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1721–1727, 2000  相似文献   

9.
N‐Trimellitylimido‐L ‐leucine was reacted with thionyl chloride, and N‐trimellitylimido‐L ‐leucine diacid chloride was obtained in a quantitative yield. The reaction of this diacid chloride with p‐aminobenzoic acid was performed in dry tetrahydrofuran, and bis(p‐amidobenzoic acid)‐N‐trimellitylimido‐L ‐leucine (5) was obtained as a novel optically active aromatic imide–amide diacid monomer in a high yield. The direct polycondensation reaction of the monomer imide–amide diacid 5 with 4,4′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylether, 1,4‐phenylenediamine, 1,3‐phenylenediamine, 2,4‐diaminotoluene, and benzidine (4,4′‐diaminobiphenyl) was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone, pyridine, and calcium chloride. The resulting novel poly(amide imide)s (PAIs), with inherent viscosities of 0.22–0.52 dL g?1, were obtained in high yields, were optically active, and had moderate thermal stability. All of the compounds were fully characterized with IR spectroscopy, elemental analyses, and specific rotation. Some structural characterization and physical properties of these new optically active PAIs are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 35–43, 2002; DOI 10.1002/app.10181  相似文献   

10.
N‐trimellitylimido‐L ‐methionine ( 3 ) was prepared by reaction of trimellitic anhydride ( 1 ) with ‐L ‐methionine ( 2 ) in acetic acid solution at refluxing temperature. This diacid was reacted with thionyl chloride, and N‐trimellitylimido‐L ‐methionine diacid chloride ( 4 ) was obtained in quantitative yield. The resulting diacid chloride was reacted with p‐aminobenzoic acid in dry acetone and bis(p‐aminobenzoic acid)‐N‐trimellitylimido‐L ‐methionine ( 5 ) was obtained as a novel optically active amide–imide diacid monomer in high yield. The direct polycondensation of amide–imide diacid monomer 5 with several aromatic diamines was carried out with tosyl chloride (TsCl)/pyridine (Py)/dimetheylformamide (DMF) system. The resulting thermally stable poly(amide–imide)s (PAIs) were obtained in good yields and inherent viscosities ranging between 0.24 and 0.46 dL g?1 and were characterized with FTIR, 1H NMR, CHN, and TGA techniques. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1248–1254, 2007  相似文献   

11.
New diimide–dicarboxylic acids, ie 4‐phenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine and 4‐p‐biphenyl‐2,6‐bis‐(4‐trimellitimidophenyl)pyridine, were synthesized by the condensation reaction of 4‐phenyl‐2,6‐bis(4‐aminophenyl)pyridine and 4‐p‐biphenyl‐2,6‐bis(4‐aminophenyl)pyridine with trimellitic anhydride in glacial acetic acid or dimethylformamide. The monomers were fully characterized by FT‐IR and NMR spectroscopies, and elemental analyses. A series of novel poly(amide–imide)s with inherent viscosities of 0.68–0.87 dl g?1 was prepared from the two diimide–diacids with various aromatic diamines by direct polycondensation. The poly(amide–imide)s were characterized by FT‐IR and NMR spectroscopies. The λmax data for the resulting poly(amide–imide)s were in the range of 260–292 nm. These polymers exhibited good solubilities in polar aprotic solvents. The 10 % weight loss temperatures are above 485 °C under a nitrogen atmosphere. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
A new diacid containing optically active functional groups, N,N′‐(4,4′‐diphthaloyl)‐bis‐L ‐leucine diacid ( 3 ), was synthesized and used in a preparation of a series of poly(amide‐imide)s (PAIs) by direct polycondensation with various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP). All polymers derived from diacid ( 3 ) were highly organosoluble in the solvents like N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, γ‐butyrolactone, cyclohexanone, and chloroform at room temperature or upon heating. Inherent viscosities of the PAIs were found to range between 0.34 and 0.61·dL g?1. All the PAIs afforded flexible and tough films. The glass‐transition temperatures of these PAIs were recorded between 212 and 237°C by differential scanning calorimetry, and the 10% weight loss temperatures were ranging from 372 to 393°C and 336–372°C under nitrogen and air, respectively. The polyimide films had a tensile strength in the range of 63–88 MPa and a tensile modulus in the range of 1.2–1.7 GPa. Optically active PAIs exhibited specific rotations in the range of ?10.58° to ?38.70°. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
A pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) was reacted with L ‐isoleucine in acetic acid, and the resulting imide acid [N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine] (4) was obtained in a high yield. 4 was converted into N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine diacid chloride by a reaction with thionyl chloride. The polycondensation reaction of this diacid chloride with several aromatic diamines, including 1,4‐phenylenediamine, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylsulfone (4,4′‐sulfonyldianiline), 4,4′‐diaminodiphenylether, 2,4‐diaminotoluene, and 1,3‐phenylenediamine, was developed with two methods. The first method was polymerization under microwave irradiation, and the second method was low‐temperature solution polymerization, with trimethylsilyl chloride used as an activating agent for the diamines. The polymerization reactions proceeded quickly and produced a series of optically active poly(amide imide)s with good yields and moderate inherent viscosities of 0.17–0.25 dL/g. All of the aforementioned polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 951–959, 2004  相似文献   

14.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) was reacted with L ‐valine in a mixture of acetic acid and pyridine (3:2) at room temperature, and then was refluxed at 90–100 °C, N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid was obtained in quantitative yield. The imide–acid was converted to N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride by reaction with thionyl chloride. Rapid and highly efficient synthesis of a number of poly(amide–imide)s was achieved under microwave irradiation using a domestic microwave oven by polycondensation of N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride with six different derivatives of 5,5‐disubstituted hydantoin compounds in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. A suitable organic medium was o‐cresol. The polycondensation proceeded rapidly, compared with conventional melt polycondensation and solution polycondensation and was almost completed within 8 min, giving a series of poly(amide–imide)s with inherent viscosities in the range 0.15–0.36 dl g?1. The resulting poly(amide–imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by Fourier‐transform infrared (FT‐IR) spectroscopy, elemental analysis, inherent viscosity (ηinh) measurements, solubility testing and specific rotation measurements. The thermal properties of the poly(amide–imide)s were investigated by using thermogravimetric analysis. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
A new‐type of dicarboxylic acid was synthesized from the reaction of 2,5‐bis(4‐aminobenzylidene)cyclopentanone with trimellitic anhydride in a solution of glacial acetic acid/pyridine (Py) at refluxing temperature. Six novel heat resistance poly(amide‐imide)s (PAIs) with good inherent viscosities were synthesized, from the direct polycondensation reaction of N,N′‐[2,5‐bis(4‐aminobenzylidene)cyclopentanone]bistrimellitimide acid with several aromatic diamines, by two different methods such as direct polycondensation in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride (CaCl2)/pyridine (Py) and direct polycondensation in a p‐toluene sulfonyl chloride (tosyl chloride, TsCl)/pyridine (Py)/N,N‐dimethylformamide (DMF) system. All of the above polymers were fully characterized by 1H NMR, FTIR, elemental analysis, inherent viscosity, solubility tests, UV‐vis spectroscopy, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and derivative of thermaogravimetric (DTG). The resulted poly(amide‐imide)s (PAIs) have showed admirable good inherent viscosities, thermal stability, and solubility. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

17.
Rapid and highly efficient synthesis of novel poly(amide‐imide)s (PAIs) were achieved under microwave irradiation by using a domestic microwave oven from the polycondensation reactions of 4,4′‐carbonyl‐bis(phthaloyl‐L ‐alanine) diacid chloride [N,N′‐(4,4′‐carbonyldiphthaloyl)] bisalanine diacid chloride (1) with six different derivatives of tetrahydropyrimidinone and tetrahydro‐2‐thioxopyrimidine compounds (2a–2f) in the presence of a small amount of a nonpolar organic medium that acts as a primary microwave absorber. Suitable organic media was o‐cresol. The polycondensation proceeded rapidly and was almost completed within 10 min, giving a series of PAIs with inherent viscosities of about 0.25–0.45 dL/g. The resulting PAIs were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by means of Fourier transform infrared spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility test, and specific rotation. Thermal properties of the PAIs were investigated using thermogravimetric analysis. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2416–2421, 2001  相似文献   

18.
A new monomer of tetraimide‐dicarboxylic acid (IV) was synthesized by starting from ring‐opening addition of 4,4′‐oxydiphthalic anhydride, trimellitic anhydride, and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene at a 1:2:2 molar ratio in N‐methyl‐2‐pyrrolidone (NMP). From this new monomer, a series of novel organosoluble poly(amide‐imide‐imide)s with inherent viscosities of 0.7–0.96 dL/g were prepared by triphenyl phosphite activated polycondensation from the tetraimide‐diacid with various aromatic diamines. All synthesized polymers were readily soluble in a variety of organic solvents such as NMP and N,N‐dimethylacetamide, and most of them were soluble even in less polar m‐cresol and pyridine. These polymers afforded tough, transparent, and flexible films with tensile strengths ranging from 99 to 125 MPa, elongations at break from 12 to 19%, and initial moduli from 1.6 to 2.4 GPa. The thermal properties and stability were also good with glass‐transition temperatures of 236–276°C and thermogravimetric analysis 10 wt % loss temperatures of 504–559°C in nitrogen and 499–544°C in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2854–2864, 2006  相似文献   

19.
A new‐type tetraimide‐dicarboxylic acid ( I ) was synthesized starting from the ring‐opening addition of p‐aminobenzoic acid (p‐ABA), 4,4'‐oxydiphthalic anhydride (ODPA), and 4,4'‐methylenedianiline (MDA) at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I. A series of poly(amide‐imide‐imide)s ( III a‐i ) with inherent viscosities of 0.78–1.45 dL/g was prepared by triphenyl phosphite‐activated polycondensation from the tetraimide‐diacid I with various aromatic diamines ( II a‐i ) in a medium consisting of NMP, pyridine, and calcium chloride. Most of the polymers were readily soluble in a variety of organic solvents such as NMP, N,N‐dimethyl acetamide, dimethyl sulfoxide, and even in less polar m‐cresol. Compared with those of the corresponding poly(amideimide)s IV a‐i , the solubilities of poly(amide‐imide‐imide)s III a‐i were greatly improved. Polymers III a‐h afforded tough, transparent, and flexible films, which had tensile strengths ranging from 87 to 107 MPa, elongations at break from 9% to 14%, and initial moduli from 2.0 to 2.4 GPa. The glass transition temperatures of polymers were recorded at 270°C–309°C. They had 10% weight loss at temperatures in the range of 540°C–570°C and left more than 52% residue even at 800°C in nitrogen.  相似文献   

20.
The primary objective of this study was to investigate the structure–property relationships in high‐performance polymers with high refractive indices and low birefringences. A series of novel poly(amide imide)s (PAIs) were synthesized from a thiazole‐containing diimide–diacid monomer and various aromatic diamines. The influence of the pendant phenyl substituents on the optical properties of these PAIs was studied by comparison with the analogous polymers containing methyl groups. The PAIs exhibited excellent solubility and good thermal stability. The optical transmittances of the PAI films at 450 nm were higher than 75%. The combination of the thiazole units, thioether linkages and pendant phenyl rings provided the PAIs with high average refractive indices of 1.7361–1.7536 and low birefringences of 0.0066–0.0097 at 632.8 nm. © 2014 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号