首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Vacuum chambers of Steady State Superconducting (SST-1) Tokamak comprises of the vacuum vessel and the cryostat. The plasma will be confined inside the vacuum vessel while the cryostat houses the superconducting magnet systems (TF and PF coils), LN2 cooled thermal shields and hydraulics for these circuits. The vacuum vessel is an ultra-high (UHV) vacuum chamber while the cryostat is a high-vacuum (HV) chamber. In order to achieve UHV inside the vacuum vessel, it would be baked at 150 °C for longer duration. For this purpose, U-shaped baking channels are welded inside the vacuum vessel. The baking will be carried out by flowing hot nitrogen gas through these channels at 250 °C at 4.5 bar gauge pressure. During plasma operation, the pressure inside the vacuum vessel will be raised between 1.0 × 10?4 mbar and 1.0 × 10?5 mbar using piezoelectric valves and control system. An ultimate pressure of 4.78 × 10?6 mbar is achieved inside the vacuum vessel after 100 h of pumping. The limitation is due to the development of few leaks of the order of 10?5 mbar l/s at the critical locations of the vacuum vessel during baking which was confirmed with the presence of nitrogen gas and oxygen gas with the ratio of ~3.81:1 indicating air leak. Similarly an ultimate vacuum of 2.24 × 10?5 mbar is achieved inside the cryostat. Baking of the vacuum vessel up to 110 °C with ±10 °C deviation was achieved with a net mass flow rate of 0.8 kg/s at 1.5 bar gauge inlet pressure and supply temperature of 230 °C at the heater end. Also during gas feed system installation, the pressure inside the VV was raised from 3.01 × 10?5 mbar to 1.72 × 10?4 mbar by triggering a pulse of lower amplitude of 25 voltage direct current (VDC) for 100 s to piezoelectric valve. This paper describes in detail the design and implementation of the various vacuum subsystems including relevant experimental results.  相似文献   

2.
The Max-Planck-Institut für Plasmaphysik in Greifswald is building up the stellarator fusion experiment Wendelstein 7-X (W7-X). To operate the superconducting magnet system the vacuum and the cold structures are protected by a thermal insulated cryostat. The plasma vessel forms the inner cryostat wall, the outer wall is realised by a thermal insulated outer vessel. In addition 254 thermal insulated ports are fed through the cryogenic vacuum to allow the access to the plasma vessel for heating systems, supply lines or plasma diagnostics.The thermal insulation is being manufactured and assembled by MAN Diesel & Turbo SE (Germany). It consists of a multi-layer insulation (MLI) made of aluminized Kapton with a silk like fibreglass spacer and a thermal shield covering the inner cryostat surfaces. The shield on the plasma vessel is made of fibreglass reinforced epoxy resin with integrated copper meshes. The outer vessel insulation is made of brass panels with an average size of 3.3 × 2.0 m2. Cooling loops made of stainless steel are connected via copper strips to the brass panels. Especially the complex 3 D shape of the plasma vessel, the restricted space inside the cryostat and the consideration of the operational component movements influenced the design work heavily. The manufacturing and the assembly has to fulfil stringent geometrical tolerances e.g. for the outer vessel panels +3/?2 mm.  相似文献   

3.
In order to fully validate actively cooled tungsten plasma facing components (industrial fabrication, operation with long plasma duration), the implementation of a tungsten axisymmetric divertor structure in the tokamak Tore-Supra is studied. With this major upgrade, so-called WEST (Tungsten Environment in Steady state Tokamak), Tore-Supra will be able to address the problematic of long plasma discharges with a metallic divertor target.To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by a pressurized hot water circuit (up to 180 °C, 4 MPa) and is designed to perform steady state plasma operation (up to 1000 s).The divertor structure will be a complex assembly ring of 4 m diameter representing a total weight of around 20 tons. The technical challenge of this component will be the implementation of angular sectors inside the vacuum vessel environment (TIG welding of the coil casing, induction brazing and electrical insulation of the copper winding). Moreover, this complex assembly must sustain harsh environmental conditions in terms of ultra high vacuum conditions, electromagnetical loads and electrical isolation (13 kV ground voltage) under high temperature.In order to fully validate the assembly and the performance of this complex component, the production of a scale one dummy coil is in progress.The paper will illustrate, the technical developments performed in order to finalize the design for the call for tender for fabrication. The progress and the first results of the simplified dummy coils will be also addressed.  相似文献   

4.
Wendelstein 7-X (W7-X) will be the world's largest superconducting helical advanced stellarator. This stellarator concept is deemed to be a desirable alternative for a future power plant like DEMO. The main advance of the static plasma is caused by the three dimensional shape of some of the main mechanical component inside the cryostat. The geometry of the plasma vessel is formed around the three dimensional shape of the plasma. The coils and their support structure are enclosed within the outer vessel. The space between the outer, the plasma vessel and the ports is called cryostat because the vacuum inside provides thermal insulation of the magnet system which is cooled down to 4 K. Due to the different thermal movements of both vessels and the support structure have to be supported separately. 10 cryo legs will bear the coil support structure. The plasma vessel supporting system is divided into two separate systems, allowing horizontal and vertical adjustments. This paper aims to give an overview of the main mechanical components of the cryostat. The authors delineate some disparate and special problems during the manufacturing of the components at the companies in Europe. It describes the current manufacturing and assembly.  相似文献   

5.
The conceptual design of the purpose-built assembly tools required for ITER tokamak assembly is given. The ITER machine assembly is sub-divided into five major activities: lower cryostat, sector sub-assembly, sector assembly, ex-vessel, and in-vessel [1]. The core components, vacuum vessel (VV) and toroidal field coil (TFC), are assembled from nine 40° sub-assemblies, each comprising a 40° VV sector, two TFCs, and the associated VV thermal shield (VVTS). The lower cryostat activities must be completed prior to sector assembly in pit to prepare the foundations for the core components, and to locate the lower components to be trapped once the core components installation begins. In-vessel and ex-vessel activities follow completion of sector assembly. To perform these assembly activities requires both massive, purpose-built tools, and standard heavy handling and support tools. The tools have the capability of supporting and adjusting the largest of the ITER components; with maximum linear dimension 19 m and mass 1200 tonne, with a precision in the low mm range. Conceptual designs for these tools have been elaborated with the collaboration of the Korean Domestic Agency (KO DA). The structural analysis was performed as well using ANSYS code.  相似文献   

6.
The JT-60SA cryostat is a stainless steel vacuum vessel (14 m diameter, 16 m height) which encloses the Tokamak providing the vacuum environment (10?3 Pa) necessary to limit the transmission of thermal loads to the components at cryogenic temperature. It must withstand both external atmospheric pressure during normal operation and internal overpressure in case of an accident.The paper summarizes the structural analyses performed in order to validate the JT-60SA cryostat vessel body design. It comprises several analyses: a buckling analysis to demonstrate stability under the external pressure; an elastic and an elastic–plastic stress analysis according to ASME VIII rules, to evaluate resistance to plastic collapse including localized stress concentrations; and, finally, a detailed analysis with bolted fasteners in order to evaluate the behavior of the flanges, assuring the integrity of the vacuum sealing welds of the cryostat vessel body.  相似文献   

7.
The HL-2A tokamak will be modified into HL-2M. The Bt at the plasma center (major radius R = 1.78 m) is 2.2 T, the minor radius is 0.65 m. The plasma current IP of HL-2M will reach up to 2.5 MA, the elongation and triangularity is more than 1.8 and more than 0.5, respectively. The vacuum vessel torus consists of 20 sectors with “D” shaped cross-section and double wall structure. 20 toroidal field coil bundles comprise 140 turns which are designed with demountable joints, the poloidal field coils system consists of 25 coils. The engineering design and calculation for field coil system, vacuum vessel, support structure, etc. are finished, many key issues for manufacture process have been discussed with industry and the fabrication of main components of HL-2M tokamak will be carried out in factories.  相似文献   

8.
The in-vessel control coil (IVCC) system, which has been designed for dedication of various active feedback plasma control functions, successfully fabricated and installed in the vacuum vessel of the Korea Superconducting Tokamak Advanced Research (KSTAR). The IVCC system consists of sixteen segmented coils that were independently fabricated outside the vacuum vessel and installed without any inside welding or brazing joints. The segmented coil system has several advantages such as eliminating possibility of cooling water leakage at the welded or brazed joints, simplification in fabrication and installation, and easy repair and maintenance of the coil system. Each segment contains eight oxygen-free high conductive coppers, which are grouped to four pairs, called as sections. Consequently, a segmented coil forms four sections for position control, field error correction (FEC), and resistive wall mode (RWM) control in accordance with electrical connection outside the cryostat. The eight conductors (or four sections) with internal coolant holes were enclosed in a rectangular welded jacket made of stainless steel 316LN and electrically insulated from the conductors by epoxy/glass composite layers. This coil system was commissioned up to 5 kA (30 kA-turns) for 5 s to achieve tentative use for the fast vertical plasma position control in the 2010 campaign of the KSTAR. This paper describes the several remarkable results in the fabrication and installation of the IVCC as well as commissioning results.  相似文献   

9.
Steady-state Superconducting Tokamak (SST-1) was installed and it is commissioning for overall vacuum integrity, magnet systems functionality in terms of successful cool down to 4.5 K and charging up to 10 kA current was started from August 2012. Plasma operation of 100 kA current for more than 100 ms was also envisaged. It is comprised of vacuum vessel (VV) and cryostat (CST). Vacuum vessel, an ultra-high (UHV) vacuum chamber with net volume of 23 m3 was maintained at the base pressure of 6.3 × 10−7 mbar for plasma confinement. Cryostat, a high-vacuum (HV) chamber with empty volume 39 m3 housing superconducting magnet system, bubble thermal shields and hydraulics for these circuits, maintained at 1.3 × 10−5 mbar in order to provide suitable environment for these components. In order to achieve these ultimate vacuums, two numbers of turbo-molecular pumps (TMP) are installed in vacuum vessel while three numbers of turbo-molecular pumps are installed in cryostat. Initial pumping of both the chambers was carried out by using suitable Roots pumps. PXI based real time controlled system is used for remote operation of the complete pumping operation. In order to achieve UHV inside the vacuum vessel, it was baked at 150 °C for longer duration. Aluminum wire-seals were used for all non-circular demountable ports and a leak tightness < 1.0 × 10−9 mbar l/s were achieved.  相似文献   

10.
11.
The ITER superconducting magnet system generates an average heat load of 23 kW at 4 K to the cryoplant, from nuclear and thermal radiation, conduction and electromagnetic heating, and requires current supplies 10–68 kA to 48 individual coils. The helium flow to remove this heat, consisting of supercritical helium at pressures up to 1.0 MPa and temperature between 4.3 and 4.7 K, is distributed to the coils and structures through 30 separate feeder lines. The feeders also contain the electrical supplies to the coil, helium supply pipes and the instrumentation lines, and are integrated with the current lead transitions to room temperature. The components consist of the in-cryostat feeders, the cryostat feedthroughs and the coil terminal boxes (CTBs). This paper discusses the functional requirements on the feeder system and presents the latest design concept and parameters of the feeder components.  相似文献   

12.
In the ongoing latest update round of EAST (Experimental Advanced Superconducting Tokamak), two sets of two single-turn Vertical Stabilization (VS) coils were manufactured and installed symmetrically above and below the mid-plane in the vacuum vessel of EAST. The Stainless Steel Mineral Insulated Conductor (SSMIC) developed for ITER In-Vessel Coils (IVCs) in Institute of Plasma Physics, Chinese Academy of Science (ASIPP) was used for the EAST VS coils manufacture. Each turn poloidal field VS coil includes three internal joints in the vacuum vessel. The middle joint connects two pieces of conductor which together form an R2.3 m arc segment inside the vacuum vessel. The other two joints connect the arc segment with the two feeders near the port along the toroidal direction to bear lower electromagnetic loads during operation. Main processes and tests include material performances checking, conductor fabrication, joint connection and testing, coil forming, insulation performances measurement were described herein.  相似文献   

13.
The stellarator fusion experiment Wendelstein 7-X (W7-X) is at present in assembly at the Max-Planck Institut für Plasmaphysik (IPP).The toroidal plasma with a ring diameter of 11 m and an average plasma diameter of 1.1 m is contained within the plasma vessel. Its form is dictated by the shape of the plasma. The form of the plasma is controlled by the coil system configuration. To control the plasma form it is necessary that all the 20 planar and 50 non-planar coils should be positioned within a tolerance of 1.5 mm. To meet this requirement a complex coil support structure was created, consisting of the central support ring and the different inter coil supports. The coils and the support structure are enclosed within the outer vessel with its domes and openings. The space between the outer and the plasma vessel is called cryostat because the vacuum inside provides thermal insulation of the magnet system, and the entire magnetic system is then be cooled down to 4 K. Due to the different thermal movements the plasma vessel and the central support ring have to be supported separately. The central support ring is held by 10 cryo legs. The plasma vessel supporting system is divided into two separate systems, allowing horizontal and vertical adjustments to centre the plasma vessel during thermal expansion.This paper aims to give an overview of the main components in the cryostat like the plasma vessel, the outer vessel, the ports and the different support systems. It describes the current manufacturing and assembly status and the associated problems of these components, using pictures and text. This paper does not describe the general assembly situation or time schedules of the Wendelstein 7-X.  相似文献   

14.
The CONSEN (CONServation of ENergy) code is a fast running code to simulate thermal-hydraulic transients, specifically developed for fusion reactors. In order to demonstrate CONSEN capabilities, the paper deals with the accident analysis of the magnet induced confinement bypass for ITER design 1996. During a plasma pulse, a poloidal field magnet experiences an over-voltage condition or an electrical insulation fault that results in two intense electrical arcs. It is assumed that this event produces two one square meters ruptures, resulting in a pathway that connects the interior of the vacuum vessel to the cryostat air space room. The rupture results also in a break of a single cooling channel within the wall of the vacuum vessel and a breach of the magnet cooling line, causing the blow down of a steam/water mixture in the vacuum vessel and in the cryostat and the release of 4 K helium into the cryostat. In the meantime, all the magnet coils are discharged through the magnet protection system actuation. This postulated event creates the simultaneous failure of two radioactive confinement barrier and it envelopes all type of smaller LOCAs into the cryostat. Ice formation on the cryogenic walls is also involved. The accident has been simulated with the CONSEN code up to 32 h. The accident evolution and the phenomena involved are discussed in the paper and the results are compared with available results obtained using the MELCOR code.  相似文献   

15.
Actively cooled tungsten plasma facing components will be used in the ITER divertor. In order to fully validate such a technology (industrial manufacturing, operation with long plasma duration), the implementation of a tungsten axis symmetric divertor in the tokamak Tore-Supra is studied. With this major upgrade, so called WEST (Tungsten Environment in Steady state), Tore-Supra will be the only European tokamak able to address the problematic of long plasma discharges with an actively cooled metallic divertor.To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by hot pressurized water (200 °C, 4 MPa). These two casings are located at the top and bottom of the vacuum vessel in order to create two magnetic X-point areas, which are protected by W-PFCs (Tungsten Plasma Facing Components) in order to extract the thermal loads. The two casing are robustly maintained together by 18 brackets in order to constitute a rigid assembly attached thanks to 12 legs (one per lower vertical port) outside the Tore_Supra vacuum vessel.The paper will illustrate the technical developments performed during 2011 in order to produce a preliminary design of the Tore-Supra WEST divertor structure with a particular focus on: the mechanical design of this major component and its integration in the Tokamak, the manufacturing issues and the technical results of the feasibility studies done with industry as well as the design of a scale one coil mock up.  相似文献   

16.
In February 2000, the project called coil support structure for the Wendelstein 7-X fusion machine was started. Since October 2009 the full production of this big (80 tons) and complex component is now completed and delivered at IPP Greifswald. The W7-X coil system consists of 20 planar and 50 non-planar coils. They are supported by a pentagonal 10 m diameter, 2.5 m high called coil support structure (CSS). The CSS is divided into five modules and each module consists of two equal half modules around the radial axis. Currently, the five modules were successfully assembled with the coils meeting the tight manufacturing tolerances. Designing, structural calculation, raw material procurement, welding & soldering technologies, milling, drilling, accurate machining, helium cooling pipe forming, laser metrology, ultra sonic cleaning and vacuum test are some of the key points used all along this successful manufacturing process. The lessons learned in the large scale production of this difficult kind of support structure will be presented as relevant experience for the realization of similar systems for future fusion devices, such as ITER.  相似文献   

17.
The Vulcan conceptual design (R = 1.2 m, a = 0.3 m, B0 = 7 T), a compact, steady-state tokamak for plasma–material interaction (PMI) science, must incorporate a vacuum vessel capable of operating at 1000 K in order to replicate the temperature-dependent physical chemistry that will govern PMI in a reactor. In addition, the Vulcan divertor must be capable of handling steady-state heat fluxes up to 10 MW m?2 so that integrated materials testing can be performed under reactor-relevant conditions. A conceptual design scoping study has been performed to assess the challenges involved in achieving such a configuration. The Vulcan vacuum system comprises an inner, primary vacuum vessel that is thermally and mechanically isolated from the outer, secondary vacuum vessel by a 10 cm vacuum gap. The thermal isolation minimizes heat conduction between the high-temperature helium-cooled primary vessel and the water-cooled secondary vessel. The mechanical isolation allows for thermal expansion and enables vertical removal of the primary vessel for maintenance or replacement. Access to the primary vessel for diagnostics, lower hybrid waveguides, and helium coolant is achieved through ~1 m long intra-vessel pipes to minimize temperature gradients and is shown to be commensurate with the available port space in Vulcan. The isolated primary vacuum vessel is shown to be mechanically feasible and robust to plasma disruptions with analytic calculations and finite element analyses. Heat removal in the first wall and divertor, coupled with the ability to perform in situ maintenance and replacement of divertor components for scientific purposes, is achieved by combining existing helium-cooled techniques with innovative mechanical attachments of plasma facing components, either in plate-type helium-cooled modules or independently bolted, helium-jet impingement-cooled tiles. The vacuum vessel and first wall design enables a wide range of potential PFC materials and configurations to be tested with relative ease, providing a new approach to reactor-relevant PMI science.  相似文献   

18.
In-vessel cryo-pump (IVCP) of the Korea Superconducting Tokamak Advanced Research (KSTAR) has been designed, fabricated, and installed in the vacuum vessel for effective particle control by pumping through a divertor gap. For the final engineering design of the IVCP supports to withstand all external forces, a structure analyses were performed for two cases. The first is the thermal stress due to cool-down from room temperature to operating temperature (cryo-panel: 4.4 K, thermal shield: 77 K), and the other is the electro-magnetic stress due to the induced eddy currents during plasma disruptions. When the plasma disrupts, the maximum stress and displacement on the supports were estimated to be 849 MPa and 5.36 mm, respectively. These results were taken into account in the support design. The IVCP system was fabricated in two half-sectors and a pre-assembling test was successfully completed in the factory. Final installation of the IVCP in the vacuum vessel was fulfilled in parallel with a pressurization test (thermal shield: 30 bar, cryo-panel: 10 bar), a helium leak test, and a thermal shock test using liquid nitrogen. As a result, the IVCP system was successfully installed in the vacuum vessel.  相似文献   

19.
This note proposes a closed poloidal magnetic configuration with an in-vessel coil system held by shielded supports. A dipole field is bounded by external coils and constrained into a hollow torus aiming at uniform intensity. In the horizontal mid-plane region the external coils and the dipole outer coils are broken in four arcs and bridged by couple of straight branches. Arcs and straight branches build a set of four side coils. In the clearance between their straight branches four tunnels in the poloidal magnetic field are achieved, to pass the supports and the feeders of the in-vessel coil system.A poloidal machine with a plasma thick as those of present large experiments is outlined. The dipole radius is 5.4 m, the plasma about it has a constant poloidal cross-section about 40 m2, a volume about 1300 m3 and a minimum thickness 1 m in the outboard. The magnetic field ranges from 1.4 to 1.8 T.  相似文献   

20.
The testing of the ITER toroidal field model coil (TFMC) in the background field of the EURATOM-LCT coil took place in autumn 2002 at the TOSKA facility of the Forschungszentrum Karlsruhe in the framework of the ITER R&D programme. The maximum currents in the two coils, in combined operation, were 16 kA in the LCT coil and 80 kA in the TFMC, respectively. The heat load of both coils, including the eddy current losses in the passive structures and the joule losses due to the joint resistances, was removed by a secondary loop of forced flow supercritical He. About 2% of the stored energy was transferred to the cryogenic system after all the safety discharges of both coils together. Most of the energy (about 98%) was extracted and transferred to the dump resistors of both coils, located outside the vacuum vessel. A computer code, based on the full inductance and resistance matrices, has been developed with SIMULINK™. After validation with experimental data the code has been used to perform circuit analysis and to evaluate the power dissipation and energy transferred to the cryogenic plant and to the external power circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号