首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The Weather Regional Forecast (WRF) model is used in this study to downscale low-resolution data over West Africa. First, the performance of the regional model is estimated through contemporary period experiments (1981?C1990) forced by ARPEGE-CLIMAT GCM output (ARPEGE) and ERA-40 re-analyses. Key features of the West African monsoon circulation are reasonably well represented. WRF atmospheric dynamics and summer rainfall compare better to observations than ARPEGE forcing data. WRF simulated moisture transport over West Africa is also consistent in both structure and variability with re-analyses, emphasizing the substantial role played by the West African Monsoon (WAM) and African Easterly Jet (AEJ) flows. The statistical significance of potential climate changes for the A2 scenario between 2032 and 2041 is enhanced in the downscaling from ARPEGE by the regional experiments, with substantial rainfall increases over the Guinea Gulf and eastern Sahel. Future scenario WRF simulations are characterized by higher temperatures over the eastern Tropical Atlantic suggesting more evaporation available locally. This leads to increased moisture advection towards eastern regions of the Guinea Gulf where rainfall is enhanced through a strengthened WAM flow, supporting surface moisture convergence over West Africa. Warmer conditions over both the Mediterranean region and northeastern Sahel could also participate in enhancing moisture transport within the AEJ. The strengthening of the thermal gradient between the Sahara and Guinean regions, particularly pronounced north of 10°N, would support an intensification of the AEJ northwards, given the dependance of the jet to the position/intensity of the meridional gradient. In turn, mid-tropospheric moisture divergence tends to be favored within the AEJ region supporting southwards deflection of moist air and contributing to deep moist convection over the Sahel where late summer rainfall regimes are sustained in the context of the A2 scenario regional projections. In conclusion, WRF proved to be a valuable and efficient tool to help downscaling GCM projections over West Africa, and thus assessing issues such as water resources vulnerability locally.  相似文献   

2.
Summary The ITCZ (Intertropical Convergence Zone) is an important parameter for climatic studies in tropical areas, and meteorological satellite imagery provides an original way to follow its location. Using archive imagery covering the 1971–1987 period, we attempted to study further some of the relationships (suggested by former studies) between ITCZ locations (followed here over the Atlantic ocean at 28°W), and climate anomalies in the Sahel, an area affected by periodic drought for the last seventeen years. We also paid close attention to more frequently studied parameters, such as upper air data, wind at sea level, and sea surface temperature. As for relative drought estimates, we assumed that runoff from the Senegal River was representative of the sahelian area and we observed that its variations were consistent with the Lamb's rainfall index over the 1965–1987 period.Since the onset of the rainy season for West Africa responds to wind changes, we assessed the link between ITCZ and wind at sea level and found the timing of northward ITCZ migration to be highly correlated (r=0.84) with the date of zonal wind stress intensification.On a general point of view, the relationships we found between rainfall amount and ITCZ position anomalies (or SST anomalies) agree with known results of precedent works, though better fit is found with the seventies than the eighties. We think this discrepancy is due in part to the fact that the parameters studied were not identical and, perhaps to a possible change in climatic conditions (on a long term basis, the data show a continuous trend for less intense equatorial upwelling in the gulf of Guinea, and our time series covers a more recent period than referenced works).With a closer look on the first half of the year, it appears that typical (wet/dry) schemes of the ITCZ migration can be evidenced more clearly, than in reporting the northernmost ITCZ location, that we found to be a less significant index: in other words, a sooner (respectively later) northward ITCZ migration corresponds to dry (respectively wet) episodes during the rainy season in sahelian areas. Hence, we propose the speed of ITCZ northwards movement as a parameterization of this event.Moisture content of the lower troposphere revealed that steady anomalies of this parameter may last several years over sahelian areas. Taking into consideration the relative strength African tropical and easterly jets, some limited results were obtained, in regard of climatic anomalies.As first conclusions, moisture transportation over sahelian area (associated with larger negative SST anomalies) is more efficient for wetter rainy season, than the intensity of convective process linked to higher local SST in the equatorial Atlantic area. In joining moisture analysis and ITZ migration (1980–1987 period), wetter rainy seasons were observed each time that positive humidity anomalies coincided with a later northward ITCZ migration (or greater northward ITCZ speed).With 8 Figures  相似文献   

3.
The performance of the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) in simulating the West African monsoon (WAM) is investigated. We focus on performance for monsoon onset timing and for rainfall totals over the June–July–August (JJA) season and on the model’s representation of the underlying dynamical processes. Experiments are driven by the ERA-Interim reanalysis and follow the CORDEX experimental protocol. Simulations with the HadGEM3 global model, which shares a common physical formulation with HadGEM3-RA, are used to gain insight into the causes of HadGEM3-RA simulation errors. It is found that HadGEM3-RA simulations of monsoon onset timing are realistic, with an error in mean onset date of two pentads. However, the model has a dry bias over the Sahel during JJA of 15–20 %. Analysis suggests that this is related to errors in the positioning of the Saharan heat low, which is too far south in HadGEM3-RA and associated with an insufficient northward reach of the south-westerly low-level monsoon flow and weaker moisture convergence over the Sahel. Despite these biases HadGEM3-RA’s representation of the general rainfall distribution during the WAM appears superior to that of ERA-Interim when using Global Precipitation Climatology Project or Tropical Rain Measurement Mission data as reference. This suggests that the associated dynamical features seen in HadGEM3-RA can complement the physical picture available from ERA-Interim. This approach is supported by the fact that the global HadGEM3 model generates realistic simulations of the WAM without the benefit of pseudo-observational forcing at the lateral boundaries; suggesting that the physical formulation shared with HadGEM3-RA, is able to represent the driving processes. HadGEM3-RA simulations confirm previous findings that the main rainfall peak near 10°N during June–August is maintained by a region of mid-tropospheric ascent located, latitudinally, between the cores of the African Easterly Jet and Tropical Easterly Jet that intensifies around the time of onset. This region of ascent is weaker and located further south near 5°N in the driving ERA-Interim reanalysis, for reasons that may be related to the coarser resolution or the physics of the underlying model, and this is consistent with a less realistic latitudinal rainfall profile than found in the HadGEM3-RA simulations.  相似文献   

4.
In spring the inland penetration of the West African Monsoon (WAM) is weak and the associated rainband is located over the Guinean coast. Then within a few days deep convection weakens considerably and the rainband reappears about 20?days after over the Sahel, where it remains until late September signalling the summer rainy season. Over the period 1989–2008 a teleconnection induced by the Indian monsoon onset is shown to have a significant impact on the WAM onset, by performing composite analyses on both observational data sets and atmospheric general circulation model simulations ensembles where the model is nudged to observations over the Indian monsoon sector. The initiation of convective activity over the Indian subcontinent north of 15°N at the time of the Indian monsoon onset results in a westward propagating Rossby wave establishing over North Africa 7–15?days after. A back-trajectory analysis shows that during this period, dry air originating from the westerly subtropical jet entrance is driven to subside and move southward over West Africa inhibiting convection there. At the same time the low-level pressure field over West Africa reinforces the moisture transport inland. After the passage of the wave, the dry air intrusions weaken drastically. Hence 20?days after the Indian monsoon onset, convection is released over the Sahel where thermodynamic conditions are more favourable. This scenario is very similar in the observations and in the nudged simulations, meaning that the Indian monsoon onset is instrumental in the WAM onset and its predictability at intraseasonal scale.  相似文献   

5.
基于1979-2016年ERA-Interim再分析资料和CAM5.3模式,研究了2016年和1998年北大西洋海温异常对中国夏季降水以及大尺度环流的可能影响及其机制。结果表明,这两年前夏(6-7月)长江中下游及其以南地区降水均异常偏多,但1998年降水异常较2016年更为显著。后夏(8月),2016年长江以南地区降水异常偏多,长江-黄河流域降水异常偏少,而1998年降水异常分布与之相反。2016年和1998年夏季中国东部降水异常的差异与西北太平洋对流层低层异常反气旋以及欧亚中高纬度环流变化的共同作用直接相关。敏感性数值试验的结果表明,北大西洋海温异常的显著差异是导致2016年和1998年夏季中国东部降水以及大尺度环流异常存在明显差异的重要原因之一。一方面,北大西洋海温异常可以通过改变欧亚中高纬度环流进而对中国夏季降水产生影响。1998年北大西洋海温异常自热带至副极地呈类似"+ - +"型分布,这种海温异常型能够在前夏欧亚中高纬度地区激发出双阻型的环流异常响应。2016年北大西洋海温异常自热带至副极地呈相对弱的"- + -"型分布,欧亚中高纬度环流异常响应总体偏弱。另一方面,北大西洋海温异常还可以通过影响热带纬向环流进而对西北太平洋对流层低层异常反气旋起调制作用。1998年北大西洋海温异常对夏季西北太平洋异常反气旋起增强作用,这与热带印度洋-太平洋海温的强迫作用相协调。然而,2016年北大西洋海温异常则有利于西北太平洋异常反气旋的减弱,这与热带印度洋-太平洋海温的强迫作用相反。因此,在这3个大洋的协同作用下,2016年和1998年前夏西北太平洋异常反气旋均偏强,但前者的振幅弱于后者。在后夏,1998年西北太平洋对流层低层仍受异常反气旋控制,2016年则为异常气旋控制。   相似文献   

6.
A set of 12 state-of-the-art coupled ocean-atmosphere general circulation models (OAGCMs) is explored to assess their ability to simulate the main teleconnections between the West African monsoon (WAM) and the tropical sea surface temperatures (SSTs) at the interannual to multi-decadal time scales. Such teleconnections are indeed responsible for the main modes of precipitation variability observed over West Africa and represent an interesting benchmark for the models that have contributed to the fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC4). The evaluation is based on a maximum covariance analysis (MCA) applied on tropical SSTs and WAM rainfall. To distinguish between interannual and multi-decadal variability, all datasets are partitioned into low-frequency (LF) and high-frequency (HF) components prior to analysis. First applied to HF observations, the MCA reveals two major teleconnections. The first mode highlights the strong influence of the El Niño Southern Oscillation (ENSO). The second mode reveals a relationship between the SST in the Gulf of Guinea and the northward migration of the monsoon rainbelt over the West African continent. When applied to HF outputs of the twentieth century IPCC4 simulations, the MCA provides heterogeneous results. Most simulations show a single dominant Pacific teleconnection, which is, however, of the wrong sign for half of the models. Only one model shows a significant second mode, emphasizing the OAGCMs’ difficulty in simulating the response of the African rainbelt to Atlantic SST anomalies that are not synchronous with Pacific anomalies. The LF modulation of these HF teleconnections is then explored through running correlations between expansion coefficients (ECs) for SSTs and precipitation. The observed time series indicate that both Pacific and Atlantic teleconnections get stronger during the twentieth century. The IPCC4 simulations of the twentieth and twenty-first centuries do not show any significant change in the pattern of the teleconnections, but the dominant ENSO teleconnection also exhibits a significant strengthening, thereby suggesting that the observed trend could be partly a response to the anthropogenic forcing. Finally, the MCA is also applied to the LF data. The first observed mode reveals a well-known inter-hemispheric SST pattern that is strongly related to the multi-decadal variability of the WAM rainfall dominated by the severe drying trend from the 1950s to the 1980s. Whereas recent studies suggest that this drying could be partly caused by anthropogenic forcings, only 5 among the 12 IPCC4 models capture some features of this LF coupled mode. This result suggests the need for a more detailed validation of the WAM variability, including a dynamical interpretation of the SST–rainfall relationships.  相似文献   

7.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

8.
A regional climate model, the Weather Research and Forecasting (WRF) Model, is forced with increased atmospheric CO2 and anomalous SSTs and lateral boundary conditions derived from nine coupled atmosphere–ocean general circulation models to produce an ensemble set of nine future climate simulations for northern Africa at the end of the twenty-first century. A well validated control simulation, agreement among ensemble members, and a physical understanding of the future climate change enhance confidence in the predictions. The regional model ensembles produce consistent precipitation projections over much of northern tropical Africa. A moisture budget analysis is used to identify the circulation changes that support future precipitation anomalies. The projected midsummer drought over the Guinean Coast region is related partly to weakened monsoon flow. Since the rainfall maximum demonstrates a southward bias in the control simulation in July–August, this may be indicative of future summer drying over the Sahel. Wetter conditions in late summer over the Sahel are associated with enhanced moisture transport by the West African westerly jet, a strengthening of the jet itself, and moisture transport from the Mediterranean. Severe drought in East Africa during August and September is accompanied by a weakened Indian monsoon and Somali jet. Simulations with projected and idealized SST forcing suggest that overall SST warming in part supports this regional model ensemble agreement, although changes in SST gradients are important over West Africa in spring and fall. Simulations which isolate the role of individual climate forcings suggest that the spatial distribution of the rainfall predictions is controlled by the anomalous SST and lateral boundary conditions, while CO2 forcing within the regional model domain plays an important secondary role and generally produces wetter conditions.  相似文献   

9.
 This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120 °W–60 °W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968–1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30 °N–20 °S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20–30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical processes at the ocean/atmosphere interface that create anomaly gradients in the meridional plane in a way which tends to alter the north–south movement of the seasonal cycle. This appears to be consistent with the intrinsic non-dipole character of the tropical Atlantic surface variability at the interannual time step and over the recent period, but produces abnormal amplitude and/or delayed excursions of the intertropical convergence zone (ITCZ). Connections with continental rainfall are approached through three (NCEP/NCAR and observed) rainfall indexes over the Nordeste region in Brazil, and the Guinea and Sahel zones in West Africa. These indices appear to be significantly linked to the SST component of the coupled modes only when the two Atlantic modes+the ENSO-like Nino3 index are taken into account in the regressions. This suggests that thermal forcing of continental rainfall is particularly sensitive to the linear combinations of some basic SST patterns, in particular to those that create meridional thermal gradients. The first mode in the Atlantic is associated with transequatorial pressure, moist static energy and precipitable water anomaly patterns which can explain abnormal location of the ITCZ particularly in northern winter, and hence rainfall variations in Nordeste. The second mode is more associated with in-phase variations of the same variables near the southern edge of the ITCZ, particularly in the Gulf of Guinea during the northern spring and winter. It is primarily linked to the amplitude and annual phase of the ITCZ excursions and thus to rainfall variations in Guinea. Connections with Sahel rainfall are less clear due to the difficulty for the model to correctly capture interannual variability over that region but the second Atlantic mode and the ENSO-like Pacific variability are clearly involved in the Sahel climate interannual fluctuations: anomalous dry (wet) situations tend to occur when warmer (cooler) waters are present in the eastern Pacific and the gulf of Guinea in northern summer which contribute to create a northward (southward) transequatorial anomaly gradient in sea level pressure over West Africa. Received: 14 April 1998 / Accepted: 24 December 1998  相似文献   

10.
The atmospheric general circulation models ARPEGE-climate and LMDz are used in an aquaplanet configuration to study the response of a zonally symmetric atmosphere to a range of sea surface temperature (SST) forcing. We impose zonally-symmetric SST distributions that are also symmetric about the equator, with varying off-equatorial SST gradients. In both models, we obtain the characteristic inter-tropical convergence zone (ITCZ) splitting that separates two regimes of equilibrium (in terms of precipitations): one with one ITCZ over the equator for large SST gradients in the tropics, and one with a double ITCZ for small tropical SST gradients. Transition between these regimes is mainly driven by changes in the low-level convergence that are forced by the SST gradients. Model-dependent, dry and moist feedbacks intervene to reinforce or weaken the effect of the SST forcing. In ARPEGE, dry advective processes reinforce the SST forcing, while a competition between sensible heat flux and convective cooling provides a complex feedback on the SST forcing in the LMDz. It is suggested that these feedbacks influence the location of the transition in the parameter range.  相似文献   

11.
The West African monsoon has over the years proven difficult to represent in global coupled models. The current operational seasonal forecasting system of the UK Met Office (GloSea4) has a good representation of monsoon rainfall over West Africa. It reproduces the various stages of the monsoon: a coastal phase in May and June, followed by onset of the Sahelian phase in July when rainfall maxima shift northward of 10N until September; and a secondary coastal rainfall maximum in October. We explore the dynamics of monsoon onset in GloSea4 and compare it to reanalyses. An important difference is the change in the Saharan heat low around the time of Sahelian onset. In Glosea4 the deepening heat low introduces moisture convergence across an east-west Sahelian band, whereas in the reanalyses such an east-west organisation of moisture does not occur and moisture is transported northwards to the Sahara. Lack of observations in the southern Sahara makes it difficult to verify this process in GloSea4 and also suggests that reanalyses may not be strongly constrained by station observations in an area key to Sahelian onset. Timing of monsoon onset has socio-economic importance for many countries in West Africa and we explore onset predictability in GloSea4. We use tercile categories to calculate probabilities for onset occurring before, near and after average in four different onset indicators. Glosea4 has modest skill at 2–3 months’ lead time, with ROC scores of 0.6–0.8. Similar skill is seen in hindcasts with models from the ENSEMBLES project, even in models with large rainfall biases over the Sahel. Forecast skill derives from tropical SST in June and many models capture at least the influence of the tropical Atlantic. This suggests that long-range skill for onset could be present in other seasonal forecasting systems in spite of mean rainfall biases.  相似文献   

12.
Summer Sahel-ENSO teleconnection and decadal time scale SST variations   总被引:5,自引:0,他引:5  
The correlation between Sahel rainfall and El Niño–Southern Oscillation (ENSO) in the northern summer has been varying for the last fifty years. We propose that the existence of periods of weak or strong relationship could result from an interaction with the global decadal scale sea surface temperature (SST) background. The main modes of SST variability have been extracted through a principal component analysis with Varimax rotation. The correlations between a July-September Sahel rainfall index and these SST modes have been computed on a 20-year running window between 1945 and 1993. The correlations with the interannual ENSO-SST mode are negative, not significant in the 1960s during the transition period from the wet climate phasis to the long-running drought in the Sahel, but then were significant since 1976. During the former period, the correlations between the Sahel rainfall index and the other SST modes (expressing mostly on quasi and multi-decadal scales) are the highest, in particular correlations with the tropical Atlantic “dipole”. Correlations between Sahel and Guinea Coast rainfall are also significantly negative. After 1970, the Sahel-Guinea Coast rainfall correlations are no longer significant, and the ENSO-SST mode becomes the only one significantly correlated with Sahel rainfall, especially due to the impact of warm events. The partial correlations between the ENSO-SST mode and the Sahel rainfall index, when the influence of the other SST modes are eliminated, are significant over all the 20-year running periods between 1945 and 1993, suggesting that this summer teleconnection could be modulated by the decadal scale SST background. The NCEP/NCAR reanalyses reproduce accurately the interannual variability of the atmospheric circulation after 1968. In particular a regional West African Monsoon Index (WAMI), combining wind speed anomalies at 925 and 200?hPa, is highly correlated with the July-September Sahel rainfall index. A warm ENSO event is associated both with an eastward mean sea level pressure gradient between the eastern tropical Pacific and the tropical Atlantic and with a northward pressure gradient along the western coast of West Africa. This pattern leads to enhanced trade winds over the tropical Atlantic and to weaker moisture advection over West Africa, consistent with a weaker monsoon system strength and a weaker Southern Hemisphere Hadley circulation. The NCEP/NCAR reanalyses do not reproduce accurately the decadal variability of the atmospheric circulation over West Africa because of artifical biases. Therefore the impact of the decadal scale pattern of the atmospheric circulation has been investigated with atmospheric general circulation model (AGCM) sensitivity experiments, by forcing the ARPEGE-Climat model with different combinations of an El Niño-like SST pattern with the pattern of the main mode of decadal scale SST variability where the hightest weights are located in the Pacific and Indian basins. AGCM outputs show that the decadal scale SST variations weakly affect Sahel rainfall variability but that they do induce an indirect effect on Sahel rainfall by enhancing the impact of the warm ENSO phases after 1980, through an increase in the fill-in of the monsoon trough and a moisture advection deficit over West Africa.  相似文献   

13.
Rainfall variability is a crucial factor in food production,water resource planning and ecosystems, especially in regions with scarce freshwaterresources. In West Africa rainfall has been subject to largedecadal and interdecadal variations during the 20th century. The most prominent feature is thereduction in rainfall amount throughout the second half of the century with somerecovery at the end. Among the conceivable mechanisms, which might inducesuch low-frequency variability in West African precipitation, this study isfocussed onsea surface temperature (SST) variations and increasing greenhouse gas (GHG)concentrations. A tool is presented to distinguish between both impacts bymeans of various climate model simulations, which are found to reproduce theobserved rainfall characteristics over West Africa reasonably well.Further, a multi-model approach is usedto evaluate the expected future greenhouse signal in West African rainfall with respect to natural variability and intermodel variations.It is found that observed SST fluctuations, forcing two different atmospheric climate models, are able to reproduce the main features ofobserved decadal rainfall anomalies in the southern part of West Africathroughout the second half of the 20th century. The seasonal response to varying SST isstrongest in summer when the region is undergoing intensive monsoondynamics. Whereas both atmospheric models simulate the observeddrought tendency,following the 1960s, there is some indication that the additional GHG forcing in one model inducessome significantly different rainfall anomalies in recent years, re-initiatingeven positive anomalies relative to the climatological mean which has alsobeen observed since the 1990s. However, thisresult is still subject to model uncertainty.Coupled climate model integrations with different climate change scenariosalsopredict that precipitation, particularly over the Guinea Coast and Sahelregion, will steadily increase into the 21st century. The model-comprehensive signal isstatistically significant with respect to natural variability and modeluncertainty, suggesting that the observed recovery of yearly rainfall overparts of West Africa might actually reflect the beginning impact of risinganthropogenic GHG. The physical mechanism, linking the radiative forcing tothe monsoonal rainfall, probably works via warming of the tropicalAtlantic Ocean.  相似文献   

14.
This article presents an overview of the land ITCZ (Intertropical Convergence Zone) over West Africa, based on analysis of NCAR–NCEP Reanalysis data. The picture that emerges is much different than the classic one. The most important feature is that the ITCZ is effectively independent of the system that produces most of the rainfall. Rainfall linked directly to this zone of surface convergence generally affects only the southern Sahara and the northern-most Sahel, and only in abnormally wet years in the region. A second feature is that the rainbelt normally assumed to represent the ITCZ is instead produced by a large core of ascent lying between the African Easterly Jet and the Tropical Easterly Jet. This region corresponds to the southern track of African Easterly Waves, which distribute the rainfall. This finding underscores the need to distinguish between the ITCZ and the feature better termed the “tropical rainbelt”. The latter is conventionally but improperly used in remote sensing studies to denote the surface ITCZ over West Africa. The new picture also suggests that the moisture available for convection is strongly coupled to the strength of the uplift, which in turn is controlled by the characteristics of the African Easterly Jet and Tropical Easterly Jet, rather than by moisture convergence. This new picture also includes a circulation feature not generally considered in most analyses of the region. This feature, a low-level westerly jet termed the African Westerly Jet, plays a significant role in interannual and multidecadal variability in the Sahel region of West Africa. Included are discussions of the how this new view relates to other aspects of West Africa meteorology, such as moisture sources, rainfall production and forecasting, desertification, climate monitoring, hurricanes and interannual variability. The West African monsoon is also related to a new paradigm for examining the interannual variability of rainfall over West Africa, one that relates changes in annual rainfall to changes in either the intensity of the rainbelt or north–south displacements of this feature. The new view presented here is consistent with a plethora of research on the synoptic and dynamic aspects of the African Easterly Waves, the disturbances that are linked to rainfall over West Africa and spawn hurricanes over the Atlantic, and with our knowledge of the prevailing synoptic and dynamic features. This article demonstrate a new aspect of the West Africa monsoon, a bimodal state, with one mode linked to dry conditions in the Sahel and the other linked to wet conditions. The switch between modes appears to be linked to an inertial instability mechanism, with the cross-equatorial pressure gradient being a critical factor. The biomodal state has been shown for the month of August only, but this month contributes most of the interannual variability. This new picture of the monsoon and interannual variability shown here appears to be relevant not only to interannual variability, but also to the multidecadal variability evidenced in the region between the 1950s and 1980s.  相似文献   

15.
The present study investigates the interdecadal change in the relationship between southern China (SC) summer rainfall and tropical Indo-Pacific sea surface temperature (SST). It is found that the pattern of tropical Indo-Pacific SST anomalies associated with SC summer rainfall variability tends to be opposite between the 1950–1960s and the 1980-1990s. Above-normal SC rainfall corresponds to warmer SST in the tropical southeastern Indian Ocean (SEIO) and cooler SST in the equatorial central Pacific (ECP) during the 1950–1960s but opposite SST anomalies in these regions during the 1980–1990s. A pronounced difference is also found in anomalous atmospheric circulation linking SEIO SST and SC rainfall between the two periods. In the 1950–1960s, two anomalous vertical circulations are present between ascent over SEIO and ascent over SC, with a common branch of descent over the South China Sea that is accompanied by an anomalous low-level anticyclone. In the 1980–1990s, however, a single anomalous vertical circulation directly connects ascent over SC to descent over SEIO. The change in the rainfall–SST relationship is likely related to a change in the magnitude of SEIO SST forcing and a change in the atmospheric response to the SST forcing due to different mean states. A larger SEIO SST forcing coupled with a stronger and more extensive western North Pacific subtropical high in recent decades induce circulation anomalies reaching higher latitudes, influencing SC directly. Present analysis shows that the SEIO and ECP SST anomalies can contribute to SC summer rainfall variability both independently and in concert. In comparison, there are more cases of concerted contributions due to the co-variability between the Indian and Pacific Ocean SSTs.  相似文献   

16.
Zhuoqi He  Renguang Wu 《Climate Dynamics》2014,42(9-10):2323-2337
This study investigates summer rainfall variability in the South China Sea (SCS) region and the roles of remote sea surface temperature (SST) forcing in the tropical Indian and Pacific Ocean regions. The SCS summer rainfall displays a positive and negative relationship with simultaneous SST in the equatorial central Pacific (ECP) and the North Indian Ocean (NIO), respectively. Positive ECP SST anomalies induce an anomalous low-level cyclone over the SCS-western North Pacific as a Rossby-wave type response, leading to above-normal precipitation over northern SCS. Negative NIO SST anomalies contribute to anomalous cyclonic winds over the western North Pacific by an anomalous east–west vertical circulation north of the equator, favoring more rainfall over northern SCS. These NIO SST anomalies are closely related to preceding La Niña and El Niño events through the “atmospheric bridge”. Thus, the NIO SST anomalies serve as a medium for an indirect impact of preceding ECP SST anomalies on the SCS summer rainfall variability. The ECP SST influence is identified to be dominant after 1990 and the NIO SST impact is relatively more important during 1980s. These Indo-Pacific SST effects are further investigated by conducting numerical experiments with an atmospheric general circulation model. The consistency between the numerical experiments and the observations enhances the credibility of the Indo-Pacific SST influence on the SCS summer rainfall variability.  相似文献   

17.
Land Cover, Rainfall and Land-Surface Albedo in West Africa   总被引:5,自引:0,他引:5  
Land surface albedo is an important variable in General Circulation Models (GCMs). When land cover is modified through anthropogenic land use, changes in land-surface albedo may produce atmospheric subsidence and reduction of rainfall. In this study we examined albedo time series and their relationships with rainfall, land cover, and population in West Africa. This particular region was selected because it has become a focal point in debates over biophysical impacts of desertification and deforestation. Our analyses revealed that albedo and rainfall were related only modestly at short time scales (monthly and annual) and that mean annual albedo values remained relatively stable from 1982–1989 over a widerange of climatic and vegetation zones in West Africa. The relationship between long-term mean rainfall and mean albedo was strong and curvilinear(r2 = 0.802). The same was true for the relationship betweenpercent tree cover and mean albedo (r2 = 0.659). These results suggest that long-term climate patterns, which control vegetation type and canopy structure, have greater influence on albedo than short-term fluctuations in rainfall. Our results reinforce other recent studies based on satellite data that have questioned the extent and pervasiveness of desertification in West Africa.  相似文献   

18.
The sensitivity of the horizontal and vertical transport of an inert tracer to seasonal variability of the complex West Africa circulations is explored by means of a 2D mesoscale meteorological model including explicit microphysics and describing the cloud dynamics of these circulations. The seasonal variations of the location and spatial extent of the cloudy masses associated with the Inter Tropical Convergence Zone (ITCZ) are reproduced in a meridional cross section over West Africa. The redistribution of the inert tracer is shown to be due to the northward migration of the ITCZ from January to July and also to the enhancement of the convective activity of the ITCZ in July. The redistribution of carbon monoxide during the dry and wet seasons is discussed, highlighting the importance of the biomass burning during the dry season as a source of trace gas enrichment in the upper levels of the tropical troposphere over West Africa.  相似文献   

19.
This study examines the ability of the cloud-resolving weather research and forecasting (WRF) model to reproduce the convective cells associated with the flash-flooding heavy rainfall near Seoul, South Korea, on 12 July 2006. A triply nested WRF model with the highest resolution of 3-km horizontal grid spacing was integrated with conventional analysis data. The WRF model simulated the initiation of isolated thunderstorms, and the formation of a convective band, cloud cluster, and squall line at nearly the right time. The corresponding precipitation simulation was also reasonably reproduced in its distribution, although the amount was underestimated. A sensitivity experiment that excludes the orography over the peninsula revealed that orographic forcing over the peninsula is responsible for about 20% increase in precipitation over the heavy rainfall region. It was identified that in addition to the up-lifting local orographic forcing to the west of the mountain range in South Korea, anticyclonic circulation due to the presence of the Gaema Heights in North Korea contribute to the confinement of convective activities in the heavy rainfall region.  相似文献   

20.
We have developed a hydrological prognostic index, HOWI (hydrological onset and withdrawal index), for the onset and the withdrawal of the West African monsoon (WAM), based on the vertically integrated moisture transport (VIMT). The regions of West Africa with the same climatological onset (withdrawal) date are characterized by a large change of the VIMT around the onset (withdrawal) date. By analyzing the variability of the VIMT, we determine the extension and the geographical position of these regions, which we take sufficiently large to filter out the fast weather variability. It turns out that the regions with the same climatological onset date do not usually coincide with the regions with the same climatological withdrawal date, the areas with the maximum variability of the VIMT during the onset phase are usually a fraction of the area where the variability of the VIMT is large during the withdrawal phase. This is because the onset has active phases and pauses in time and it is fragmented in space, while the withdrawal is rather rapid and almost uniformly distributed through the entire monsoonal region. When the monsoon moves inland, the rainfall slightly trails behind the arrival of the moisture, and, when the monsoon moves back towards the gulf of Guinea, the moisture slightly precedes the retreating rainfall. In a specific region, we say that the onset (withdrawal) of the monsoon occurs when the moisture reaches (declines to) half of its climatological value. The level of the moisture relatively to its climatological value is evaluated through the HOWI, i.e., at the onset (withdrawal) the HOWI is zero with a positive (negative) tendency. We find that the dates of the onset of the monsoon determined using the HOWI, computed in the region where the VIMT has its maximum variability during the onset phase of WAM, well agree with the dates of the sudden transition of the ITCZ (Intertropical Convergence Zone) from 5 to 10°N. The uncertainty on the onset date is of the order of 2 pentads, which is comparable to the uncertainty on the date of the sudden transition of the ITCZ. We, then, use the HOWI to determine the onset and the withdrawal dates of the monsoon for the period 1979–2004, finding that an early (late) onset usually preludes to a longer (shorter) monsoonal season with more (less) cumulated rain. Finally, we compare the onset dates in the Sahelian region, for the period 1979–2004, with those determined using methods based on rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号