首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The D-sorbitol dehydrogenase gene, sldA, and an upstream gene, sldB, encoding a hydrophobic polypeptide, SldB, of Gluconobacter suboxydans IFO 3255 were disrupted in a check of their biological functions. The bacterial cells with the sldA gene disrupted did not produce L-sorbose by oxidation of D-sorbitol in resting-cell reactions at pHs 4.5 and 7.0, indicating that the dehydrogenase was the main D-sorbitol-oxidizing enzyme in this bacterium. The cells did not produce D-fructose from D-mannitol or dihydroxyacetone from glycerol. The disruption of the sldB gene resulted in undetectable oxidation of D-sorbitol, D-mannitol, or glycerol, although the cells produced the dehydrogenase. The cells with the sldB gene disrupted produced more of what might be signal-unprocessed SldA than the wild-type cells did. SldB may be a chaperone-like component that assists signal processing and folding of the SldA polypeptide to form active D-sorbitol dehydrogenase.  相似文献   

2.
Two different membrane-bound enzymes oxidizing D-sorbitol are found in Gluconobacter frateurii THD32: pyroloquinoline quinone-dependent glycerol dehydrogenase (PQQ-GLDH) and FAD-dependent D-sorbitol dehydrogenase (FAD-SLDH). In this study, FAD-SLDH appeared to be induced by L-sorbose. A mutant defective in both enzymes grew as well as the wild-type strain did, indicating that both enzymes are dispensable for growth on D-sorbitol. The strain defective in PQQ-GLDH exhibited delayed L-sorbose production, and lower accumulation of it, corresponding to decreased oxidase activity for D-sorbitol in spite of high D-sorbitol dehydrogenase activity, was observed. In the mutant strain defective in PQQ-GLDH, oxidase activity with D-sorbitol was much more resistant to cyanide, and the H+/O ratio was lower than in either the wild-type strain or the mutant strain defective in FAD-SLDH. These results suggest that PQQ-GLDH connects efficiently to cytochrome bo 3 terminal oxidase and that it plays a major role in L-sorbose production. On the other hand, FAD-SLDH linked preferably to the cyanide-insensitive terminal oxidase, CIO.  相似文献   

3.
During the course of studies on the oxidative metabolism of d-sorbitol by acetic acid bacteria, it was found that d-sorbitol was almost quantitatively converted to 5-keto-d-fructose via l-sorbose by a certain strain of Gluconobacter suboxydans. In addition to 5-keto-d-fructose, three γ-pyrone compounds, kojic acid, 5-oxymaltol, and 3-oxykojic acid, 2-keto-l-gulonate, and several organic acids such as succinic, glycolic, and glyceric acids were confirmed in the culture filtrate of this bacterium.
  • The most suitable carbon source for 5-ketofructose fermentation by Gluconobacter suboxydans Strain 1 was confirmed to be d-sorbitol or l-sorbose using growing and resting cells. d-Fructose had little effect on the formation of this dicarbonylhexose.

  • The optimal pH for the formation from l-sorbose by intact cells was found to be at 4.2.

  • The activity of the pentose phosphate cycle in the resting cells was calculated as 13~17 μatoms/hr/mg of dry cells by the use of the manometric techniques.

  • There was no strain tested so far which could accumulate a large amount of 5- keto-d-fructose from d-sorbitol except this bacterium.

  • The experimental results shown in this paper makes the prediction that a certain dehydrogenating system of l-sorbose is functional in the organism, and the metabolic pathways of d-sorbitol via l-sorbose and 5-keto-d-fructose is proposed.

  相似文献   

4.
We detected carboxymethyl cellulase activity in a crude extract of Acetobacter xylinum KU-1. The enzyme activity was detected when glycerol, d-fructose, d-mannitol, d-glucose, d-arabitol, d-sorbitol, or carboxymethyl cellulose was used as a carbon source. The optimum pH was found to be 4.0, while the optimum temperature was 50°C. The enzyme activity was inhibited characteristically by the addition of Hg2+.  相似文献   

5.
Polyol dehydrogenases of Acetobacter melanogenum were investigated. Three polyol dehydrogenases, i. e. NAD+-linked d-mannitol dehydrogenase, NAD+-linked sorbitol dehydrogenase and NADP+-linked d-mannitol dehydrogenase, in the soluble fraction of the organism were purified 12-fold, 8-fold and 88-fold, respectively, by fractionation with ammonium sulfate and DEAE-cellulose column chromatography. NAD+-linked sorbitol dehydrogenase reduced 5-keto-d-fructose (5KF) to l-sorbose in the presence of NADH, whereas NADP+-linked d-mannitol dehydrogenase reduced the same substrate to d-fructose in the presence of NADPH. It was also shown that NAD+-linked d-mannitol dehydrogenase was specific for the interconversion between d-mannitol and d-fructose and that this enzyme was very unstable in alkaline conditions.  相似文献   

6.
D-Mannitol dehydrogenase (EC 1.1.1.138) was purified and crystallized for the first time from the cell-free extract of Gluconobacter suboxydans IFO 12528. The enzyme was purified about 100-fold by a procedure involving ammonium sulfate fractionation, DEAE-Sephadex A-50 column chromatography, and gel filtration by a Sephadex G-75 column. The enzyme was completely separated from a similar enzyme, NAD-dependent D-mannitol dehydrogenase (EC 1.1.1.67), during enzyme purification. There being sufficient purity of the enzyme at this stage, the enzyme was crystallized, by the addition of ammonium sulfate, to fine needles. The crystalline enzyme showed a single sedimentation peak in analytical ultracentrifugation, giving an apparent sedimentation constant of 3.6 s. The molecular mass of the enzyme was estimated to be 50 kDa by SDS-PAGE and gel filtration chromatography. Oxidation of D-mannitol to D-fructose and reduction of D-fructose to D-mannitol were specifically catalyzed with NADP and NADPH, respectively. NAD and NADH were inert for the enzyme. Since the reaction equilibrium declined to D-fructose reduction over a wide pH range, the enzyme showed several advantages for direct enzymatic measurement of D-fructose. Even in the presence of a large excess of D-glucose and other substances, oxidation of NADPH to NADP was highly specific and stoichiometric to the D-fructose reduced.  相似文献   

7.
d-Glucose-isomerizing enzyme from Escherichia intermedia HN-500, which converts d-glucose to d-fructose in the presence of arsenate, was purified by treating with manganous sulfate, rivanol, and DEAE-Sephadex column chromatography. About 180-fold purified enzyme preparation was obtained by the above procedures. The purified preparation was free from the activities of d-glucose-, d-galactose-, glucose-6-phosphate-, mannitol-, and sorbitol-dehydrogenases and was homogeneous on polyacrylamide gel in zone electrophoresis. Optima of pH and temperature for the enzyme were found to be pH 7.0 and 50°C, respectively. The enzyme was completely inactivated by heating at 60°C for ten minutes and stable in the pH range of 7.0~9.0 at 30°C. Activation energy for the isomerizing enzyme was calculated to be 15,300 calories per mole degree from Arrhenius' equation. Either in the absence or presecne of arsenate, d-mannose, d-xylose, d-mannitol and d-sorbitol could not be isomerized by the purified enzyme at all, but the present enzyme isomerized exclusively glucose-6-phosphate and fructose-6-phosphate in the absence of arsenate.  相似文献   

8.
The crystalline d-mannitol dehyrogenase (d-mannitol:NAD oxidoreductase, EC 1.1.1.67) catalyzed the reversible reduction of d-fructose to d-mannitol. d-Sorbitol was oxidized only at the rate of 4% of the activity for d-mannitol. The enzyme was inactive for all of four pentitols and their corresponding 2-ketopentoses. The apparent optimal pH for the reduction of d-fructose or the oxidation of d-mannitol was 5.35 or 8.6, respectively. The Michaelis constants were 0.035 m for d-fructose and 0.020 m for d-mannitol. The enzyme was also found to be specific for NAD. The Michaelis constans were 1 × 10?5 m for NADH2 and 2.7 × 10?4 m for NAD.  相似文献   

9.
D-Psicose, a new alternative sweetener, was produced from allitol by microbial oxidation of the newly isolated strain Enterobacter aerogenes IK7. Cells grown in tryptic soy broth medium (TSB) supplemented with D-mannitol at 37 °C were found to have the best oxidation potential. The cells, owing to broad substrate specificity, oxidized various polyols (tetritol, pentitol, and hexitol) to corresponding rare ketoses. By a resting cell reaction, 10% of allitol was completely transformed to the product D-psicose, which thus becomes economically feasible for the mass production of D-psicose. Finally, the product was crystallized and confirmed to be D-psicose by analytical methods.  相似文献   

10.
The transglucosidation reaction of brewer’s yeast α-glucosidase was examined under the co-existence of l-sorbose and phenyl-α-glucoside. As the transglucosidation products, three kinds of new disaccharide were chromatographically isolated. It was presumed that these disaccharides consisting of d-glucose and l-sorbose were 1-O-α-d-glucopyranosyl-l-sorbose ([α]D+89.0), 3-O-α-d-glucopyranosyl-l-sorbose ([α]D+69.1) and 4-O-α-d-glucopyranosyl-l-sorbose ([α]D+81.0). The principal product formed in the enzyme reaction was 1-O-α-d-glucopyranosyl-l-sorbose.  相似文献   

11.
Bacillus stearothermophilus CGTase had a wider acceptor specificity than Bacillus macerans CGTase did and produced large amounts of transfer products of various acceptors such as D-galactose, D-mannose, D-fructose, D- and L-arabinose, d- and L-fucose, L-rhamnose, D-glucosamine, and lactose, which were inefficient acceptors for B. macerans CGTase. The main component of the smallest transfer products of lactose was assumed to be α-D-glucosyl O-β-D-galactosyl-(l→4)-β-D-glucoside.  相似文献   

12.
A number of bacterial strains from type culture collections and natural sources were examined in their metabolic characteristics toward sorbitol and l-sorbose.

Paper chromatographic analyses of sorbitol and l-sorbose metabolites obtained from the cultures of various bacteria revealed that the organisms producing 2-keto-l-gulonic acid from sorbitol were merely found in the genera Acetobacter, Gluconobacter and Pseudomonas, whereas those producing the acid from l-sorbose were distributed in the twelve genera of bacteria: Acetobacter, Alcaligenes, Aerobacter, Azotobacter, Bacillus, Escherichia, Gluconobacter, Klebsiella, Micrococcus, Pseudomonas, Serratia and Xanthomonas.

G. melanogenus, which was characterized by excellent production of 2-keto-l-gulonic acid from sorbitol, also formed several other sugars and sugar acids as the sorbitol metabolites. These compounds were identified to be d-fructose, l-sorbose, d-mannonic acid, L-idonic acid, 2-keto-d-gluconic acid and 5-keto-d-mannonic acid, respectively, by means of two-dimensional paper chromatography.

Bacteria producing 2-keto-l-gulonic acid from sorbitol were usually isolated from fruits but not from soil.  相似文献   

13.
The synthesis is reported of β-D-fructopyranosyl-(2→6)-D-glucopyranose that had previously been isolated from a fermented plant extract as a new saccharide. A disaccharide was predominately formed from an equal amount of D-glucose and D-fructose under melting conditions at 140 °C for 60 to 90 min. This saccharide was isolated from the reaction mixture by carbon-Celite column chromatography and preparative HPLC, and was confirmed to be β-D-fructopyranosyl-(2→6)-D-glucopyranose by TOF-MS and NMR analyses.  相似文献   

14.
15.
A bacterial strain, HN-56, having an activity of d-glucose isomerization was isolated from soil, and was identified to be similar to Aerobacter aerogenes (Kruse) Beijerink. d-Glucose-isomerizing activity was induced when HN-56 was precultured in the media containing d-xylose, d-mannose, lactate, especially d-mannitol. Paper chromatography showed that the ketose formed in reaction system containing d-glucose was d-fructose alone. The optimum pH for the reaction was 6.5~7.0. Sulfhydryl reagents inhibit the reaction, but metal inhibitors affect little if any. With the washed living cells as enzyme source, only arsenate could accumulate d-fructose. In addition, the cells grown with d-mannitol and d-mannose showed no activity of d-xylose isomerase.  相似文献   

16.
A new H2O2-generating pyranose oxidase was purified as a strong antifungal protein from an arbuscular mycorrhizal fungus, Tricholoma matsutake. The protein showed a molecular mass of 250 kDa in gel filtration, and probably consisted of four identical 62 kDa subunits. The protein contained flavin moiety and it oxidized D-glucose at position C-2. H2O2 and D-glucosone produced by the pyranose oxidase reaction showed antifungal activity, suggesting these compounds were the molecular basis of the antifungal property. The V max, K m, and k cat for D-glucose were calculated to be 26.6 U/mg protein, 1.28 mM, and 111/s, respectively. The enzyme was optimally active at pH 7.5 to 8.0 and at 50°C. The preferred substrate was D-glucose, but 1,5-anhydro-D-glucitol, L-sorbose, and D-xylose were also oxidized at a moderate level. The cDNA encodes a protein consisting of 564 amino acids, showing 35.1% identity to Coriolus versicolor pyranose oxidase. The recombinant protein was used for raising the antibody.  相似文献   

17.
We detected dye-linked D-mannitol dehydrogenase activity in the crude extract of Acetobacter xylinum KU-1. The enzyme activity was specific for D-mannitol, and not pyridine nucleotide (NAD+, NADP+)-dependent. The optimal pH was found to be 5.0, while the optimal temperature was at 50°C. The enzyme activity was inhibited by p-quinone noncompetitively.  相似文献   

18.
[13C]Formaldehyde was selectively incorporated into the C-1 position of D-fructose 6-phosphate by condensation with D-ribulose 5-phosphate catalyzed by a partially purified enzyme system for formaldehyde fixation in Methylomonas aminofaciens 77a. Much of the [1-13C]D-fructose 6-phosphate produced in this reaction was converted to [1-13C]D-glucose 6-phosphate by the addition of glucose-6-phosphate isomerase. A fed-batch reaction with periodic additions of the substrates afforded 56.2 g/liter D-glucose 6-phosphate and 26.8g/liter D-fructose 6-phosphate. When [13C]methanol was used as the C1-donor, the yield of [1-13C]D-glucose 6-phosphate was high when alcohol oxidase was added. The optimum conditions for sugar phosphate production in the fed-batch reaction gave 45.6g/liter [1-13C]D-glucose 6-phosphate and 16.4g/liter [1-13C]D-fructose 6-phosphate in 165min. The molar yield of the total sugar phosphates to methanol added was 95%. The addition of H2O2 and catalase to the reaction system supplied molecular oxygen for methanol oxidation to formaldehyde by alcohol oxidase.  相似文献   

19.
A putative endo-β-1,4-D-galactanase gene of Thermotoga maritima was cloned and overexpressed in Escherichia coli. The recombinant enzyme hydrolyzed pectic galactans and produced D-galactose, β-1,4-D-galactobiose, β-1,4-D-galactotriose, and β-1,4-D-galactotetraose. The enzyme displayed optimum activity at 90 °C and pH 7.0. It was slowly inactivated above pH 8.0 and below pH 5.0 and stable at temperatures up to 80 °C.  相似文献   

20.
ABSTRACT

Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5–10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi–Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23–12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号