首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In data envelopment analysis (DEA), efficient decision making units (DMUs) are of primary importance as they define the efficient frontier. The current paper develops a new sensitivity analysis approach for a category DMUs and finds the stability radius for all efficient DMUs. By means of combining some classic DEA models and with the condition that the efficiency scores of efficient DMUs remain unchanged, we are able to determine what perturbations of the data can be tolerated before efficient DMUs become inefficient. Our approach generalizes the conventional sensitivity analysis approach in which the inputs of efficient DMUs increase and their outputs decrease, while the inputs of inefficient DMUs decrease and their outputs increase. We find the maximum quantity of perturbations of data so that all first level efficient DMUs remain at the same level.  相似文献   

2.
In data envelopment analysis (DEA) efficient decision making units (DMUs) are of primary importance as they define the efficient frontier. The current paper develops a new sensitivity analysis approach for the basic DEA models, such as, those proposed by Charnes, Cooper and Rhodes (CCR), Banker, Charnes and Cooper (BCC) and additive models, when variations in the data are simultaneously considered for all DMUs. By means of modified DEA models, in which the specific DMU under examination is excluded from the reference set, we are able to determine what perturbations of the data can be tolerated before efficient DMUs become inefficient. Our approach generalises the usual sensitivity analysis approach developed in which perturbations of the data are only applied to the test DMU while all the remaining DMUs remain fixed. In our framework data are allowed to vary simultaneously for all DMUs across different subsets of inputs and outputs. We study the relations of the infeasibility of modified DEA models employed and the robustness of DEA models. It is revealed that the infeasibility means stability. The empirical applications demonstrate that DEA efficiency classifications are robust with respect to possible data errors, particularly in the convex DEA case.  相似文献   

3.
Conventional data envelopment analysis (DEA) assists decision makers in distinguishing between efficient and inefficient decision making units (DMUs) in a homogeneous group. Standard DEA models can not provide more information about efficient units. Super-efficiency DEA models can be used in ranking the performance of efficient DMUs and overcome this obstacle. Because of the possible infeasibility, the use of super efficiency models has been restricted. This research proposes a methodology to determine a distance-based measure of super-efficiency. The proposed methodology overcomes the infeasibility problem of the existing ranking methodologies. The applicability of the proposed model is illustrated in the context of the analysis of gas companies?? performance.  相似文献   

4.
Data envelopment analysis (DEA) is a data-oriented approach for evaluating the performances of a set of peer entities called decision-making units (DMUs), whose performance is determined based on multiple measures. The traditional DEA, which is based on the concept of efficiency frontier (output frontier), determines the best efficiency score that can be assigned to each DMU. Based on these scores, DMUs are classified into DEA-efficient (optimistic efficient) or DEA-non-efficient (optimistic non-efficient) units, and the DEA-efficient DMUs determine the efficiency frontier. There is a comparable approach which uses the concept of inefficiency frontier (input frontier) for determining the worst relative efficiency score that can be assigned to each DMU. DMUs on the inefficiency frontier are specified as DEA-inefficient or pessimistic inefficient, and those that do not lie on the inefficient frontier, are declared to be DEA-non-inefficient or pessimistic non-inefficient. In this paper, we argue that both relative efficiencies should be considered simultaneously, and any approach that considers only one of them will be biased. For measuring the overall performance of the DMUs, we propose to integrate both efficiencies in the form of an interval, and we call the proposed DEA models for efficiency measurement the bounded DEA models. In this way, the efficiency interval provides the decision maker with all the possible values of efficiency, which reflect various perspectives. A numerical example is presented to illustrate the application of the proposed DEA models.  相似文献   

5.
Data envelopment analysis (DEA) is a powerful technique for performance evaluation of decision making units (DMUs). Ranking efficient DMUs based on a rational analysis is an issue that yet needs further research. The impact of each efficient DMU in evaluation of inefficient DMUs can be considered as additional information to discriminating among efficient DMUs. The concept of reference frontier share is introduced in which the share of each efficient DMU in construction of the reference frontier for evaluating inefficient DMUs is considered. For this purpose a model for measuring the reference frontier share of each efficient DMU associated with each inefficient one is proposed and then a total measure is provided based on which the ranking is made. The new approach has the capability for ranking extreme and non-extreme efficient DMUs. Further, it has no problem in dealing with negative data. These facts are verified by theorems, discussions and numerical examples.  相似文献   

6.
Data envelopment analysis (DEA), considering the best condition for each decision making unit (DMU), assesses the relative efficiency and partitions DMUs into two sets: efficient and inefficient. Practically, in traditional DEA models more than one efficient DMU are recognized and these models cannot rank efficient DMUs. Some studies have been carried out aiming at ranking efficient DMUs, although in some cases only discrimination of the most efficient unit is desirable. Furthermore, several investigations have been done for finding the most CCR-efficient DMU. The basic idea of the majority of them is to introduce an integrated model which achieves an optimal common set of weights (CSW). These weights help us identify the most efficient unit in an identical condition.  相似文献   

7.
《Optimization》2012,61(5):1177-1193
So far numerous models have been proposed for ranking the efficient decision-making units (DMUs) in data envelopment analysis (DEA). But, the most shortcoming of these models is their two-stage orientation. That is, firstly we have to find efficient DMUs and then rank them. Another flaw of some of these models, like AP-model (A procedure for ranking efficient units in data envelopment analysis, Management Science, 39 (10) (1993) 1261–1264), is existence of a non-Archimedean number in their objective function. Besides, when there is more than one weak efficient unit (or non-extreme efficient unit) these models could not rank DMUs. In this paper, we employ hyperplanes of the production possibility set (PPS) and propose a new method for complete ranking of DMUs in DEA. The proposed approach is a one stage method which ranks all DMUs (efficient and inefficient). In addition to ranking, the proposed method determines the type of efficiency for each DMU, simultaneously. Numerical examples are given to show applicability of the proposed method.  相似文献   

8.
Data envelopment analysis (DEA) is a mathematical programming technique for identifying efficient frontiers for peer decision making units (DMUs). The ability of identifying frontier DMUs prior to the DEA calculation is of extreme importance to an effective and efficient DEA computation. In this paper, we present mathematical properties which characterize the inherent relationships between DEA frontier DMUs and output–input ratios. It is shown that top-ranked performance by ratio analysis is a DEA frontier point. This in turn allows identification of membership of frontier DMUs without solving a DEA program. Such finding is useful in streamlining the solution of DEA.  相似文献   

9.
The mixed integer linear programming (MILP) models are proposed to estimate the performance of decision making units (DMUs) including both integer and real values in data envelopment analysis (DEA). There are several studies to propose MILPs in the literature of DEA; however, they have some major shortcomings unfortunately. This study firstly mentioned the shortcomings in the previous researches and secondly suggests a robust MILP based on the Kourosh and Arash Method (KAM). The proposed linear model, integer-KAM (IKAM), has almost all capabilities of the linear KAM and significantly removes the shortcomings in the current MILPs. For instance, IKAM benchmarks and ranks all technically efficient and inefficient DMUs at the same time. It detects outliers, and estimates the production frontier significantly. A numerical example of 39 Spanish airports with four integer inputs and three outputs including two integer values and a real value also represents the validity of the statements.  相似文献   

10.
In 1999, Li and Reeves presented the so-called MCDEA (Multiple Criteria Data Envelopment Analysis) model. This model is in fact a three objective linear model. It may be used to improve the discriminatory power of the DEA models, as well as generate a more reasonable distribution of the inputs and outputs weights. Besides the classical optimization of the efficiency index, Li and Reeves introduced two other objective functions, called minisum and minimax. Despite of being an important approach, it does not provide benchmarks or targets for inefficient DMUs. Benchmarks and targets are one of the most important DEA features and in standard DEA are determined using the dual (envelope) model. In this paper, we introduce an approach of the MCDEA dual formulation taking into account only two objective functions at each time. Combining both partial models we suggest benchmarks for each inefficient DMU.  相似文献   

11.
While traditional data envelopment analysis (DEA) models assess the relative efficiency of similar, independent decision making units (DMUs) centralized DEA models aim at reallocating inputs and outputs among the units setting new input and output targets for each one. This system point of view is appropriate when the DMUs belong to a common organization that allocates their inputs and appropriates their outputs. This intraorganizational perspective opens up the possibility that greater technical efficiency for the organization as a whole might be achieved by closing down some of the existing DMUs. In this paper, we present three centralized DEA models that take advantage of this possibility. Although these models involve some binary variables, we present efficient solution approaches based on Linear Programming. We also present some numerical results of the proposed models for a small problem from the literature.  相似文献   

12.
It has been widely recognized that data envelopment analysis (DEA) lacks discrimination power to distinguish between DEA efficient units. This paper proposes a new methodology for ranking decision making units (DMUs). The new methodology ranks DMUs by imposing an appropriate minimum weight restriction on all inputs and outputs, which is decided by a decision maker (DM) or an assessor in terms of the solutions to a series of linear programming (LP) models that are specially constructed to determine a maximin weight for each DEA efficient unit. The DM can decide how many DMUs to be retained as DEA efficient in final efficiency ranking according to the requirement of real applications, which provides flexibility for DEA ranking. Three numerical examples are investigated using the proposed ranking methodology to illustrate its power in discriminating between DMUs, particularly DEA efficient units.  相似文献   

13.
We present a theoretical and computational study of the impact of inserting a new attribute and removing an old attribute in a data envelopment analysis (DEA) model. Our objective is to obviate a portion of the computational effort needed to process such model changes by studying how the efficient/inefficient status of decision-making units (DMUs) is affected. Reducing computational efforts is important since DEA is known to be computationally intensive, especially in large-scale applications. We present a comprehensive theoretical study of the impact of attribute insertion and removal in DEA models, which includes sufficient conditions for identifying efficient DMUs when an attribute is added and inefficient DMUs when an attribute is removed. We also introduce a new procedure, HyperClimb, specially designed to quickly identify some of the new efficient DMUs, without involving LPs, when the model changes with the addition of an attribute. We report on results from computational tests designed to assess this procedure's effectiveness.  相似文献   

14.
求DEA有效最速方向的一般方法   总被引:2,自引:1,他引:1  
提出经验生产可能集的支撑超平面表示形式,在献[3]的基础上,对生产可能集内任意非DEA有效的决策单元,给出在生产可能集内,求解其DEA有效最速方向,使其最速达到DEA有效的一般方向,同时指出献[4]、[7]中的两处错误。  相似文献   

15.
Competition is often presented in a free market. Efficiency evaluation of decision-making units (DMUs) needs accommodation of such competition among various units due to constrained resources. This paper develops an innovative quantitative approach to address the above-mentioned performance evaluation problem with constrained resource using output-oriented DEA. The proposed model allows DMUs to identify the maximum input reduction and resource savings to achieve performance improvement. Relations between the proposed model and classical output-oriented DEA models are explored and some economic insights are derived from these models. The proposed approach is validated by use of computational examples.  相似文献   

16.
The contribution of this paper is to provide an approach for evaluating the performance of a group of decision making units (DMUs) based on the production technology. Group evaluation is an application of data envelopment analysis (DEA). DEA uses linear programming to provide a suitable technique to estimate a multiple-input/multiple-output empirical efficient function. This paper applies group evaluation to evaluate the performance of Iranian commercial banks.  相似文献   

17.
Since in evaluating by traditional data envelopment analysis (DEA) models many decision making units (DMUs) are classified as efficient, a large number of methods for fully ranking both efficient and inefficient DMUs have been proposed. In this paper a ranking method is suggested which basically differs from previous methods but its models are similar to traditional DEA models such as BCC, additive model, etc. In this ranking method, DMUs are compared against an full-inefficient frontier, which will be defined in this paper. Based on this point of view many models can be designed, and we mention a radial and a slacks-based one out of them. This method can be used to rank all DMUs to get analytic information about the system, and also to rank only efficient DMUs to discriminate between them.  相似文献   

18.
This paper provides a new structure in data envelopment analysis (DEA) for assessing the performance of decision making units (DMUs). It proposes a technique to estimate the DEA efficient frontier based on the Arash Method in a way different from the statistical inferences. The technique allows decisions in the target regions instead of points to benchmark DMUs without requiring any more information in the case of interval/fuzzy DEA methods. It suggests three efficiency indexes, called the lowest, technical and highest efficiency scores, for each DMU where small errors occur in both input and output components of the Farrell frontier, even if the data are accurate. These efficiency indexes provide a sensitivity index for each DMU and arrange both inefficient and technically efficient DMUs together while simultaneously detecting and benchmarking outliers. Two numerical examples depicted the validity of the proposed method.  相似文献   

19.
Many studies have attempted to overcome the inherent relativity of data envelopment analysis (DEA), which gives rise to the existence of undiscriminated decision-making units (DMUs) or the changes in the reference relationships depending on how the DMUs are grouped. This study presents a new and intuitive algorithm based on the bootstrapping method for generating a network that reflects both the DMUs’ original reference relationships and their potential benchmarks in a way that does not violate DEA's theoretical and practical premises while enabling a fuller ranking of the DMUs. An in-depth discussion regarding the definition of two types of potential benchmarks that can be used to rank DMUs flexibly is provided to highlight the superiority of the proposed algorithm. The application of our proposed algorithm delivers significant advantages over existing network approach models and opens new possibilities for utilizing the bootstrap DEA method.  相似文献   

20.
Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs). Recently DEA has been extended to examine the efficiency of two-stage processes, where all the outputs from the first stage are intermediate measures that make up the inputs to the second stage. The resulting two-stage DEA model provides not only an overall efficiency score for the entire process, but as well yields an efficiency score for each of the individual stages. Due to the existence of intermediate measures, the usual procedure of adjusting the inputs or outputs by the efficiency scores, as in the standard DEA approach, does not necessarily yield a frontier projection. The current paper develops an approach for determining the frontier points for inefficient DMUs within the framework of two-stage DEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号