首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
纳米SiC增强铝合金表面阳极氧化膜的组织与性能   总被引:3,自引:0,他引:3  
以硫酸、草酸、氨基磺酸为基础电解液,分别添加3,8,12,15 g/L的纳米SiC颗粒,利用直流氧化电源在优化的复合共沉积工艺参数下,在2024铝合金表面制备纳米SiC增强的硬质阳极氧化膜.结果表明:纳米SiC颗粒弥散分布在阳极氧化膜中,形成了纳米颗粒增强的硬质Al2O3氧化膜组织结构;随着纳米SiC添加量的增加,膜的厚度由没有添加纳米SiC颗粒的42μm增加到了48μm;当SiC的添加量为12 g/L时,氧化膜的硬度最高而磨耗最低,硬度由没有添加纳米颗粒样品的400 HV左右提高到了440 HV,磨损量由25 mg降到8 mg;纳米SiC在阳极氧化过程中,通过机械夹杂、吸附作用等形式进入膜层...  相似文献   

2.
本文通过6063合金阳极氧化膜的连续性实验,透射电子显微分析等手段,研究了稀土、镁、硅对阳极氧化膜的厚度、耐蚀性和显微硬度的影响。实验结果表明:在60min内进行阳极氧化,氧化膜的厚度与氧化时间成直线关系,合全元素对膜厚影响不大;稀土元素能使6063合全氧化膜中缺陷减少及膜的连续性增加,氧化膜中针孔变小且孔分布均匀,因而明显地提高了6063合金的耐蚀性和显微硬度。  相似文献   

3.
通过对工业纯铝L2进行直流电阳极氧化来考察氧化时间、氧化电压对氧化膜厚度及硬度的影响,并对经阳极氧化的试样横截面进行SEM和EDS测试分析,结果表明电解液成分H2SO4浓度为200g/L、Al2O3浓度为1g/L,直流氧化电压为10V,氧化时间为40min,温度为20±1℃的条件下,可以获得均匀、与试样基体结合紧密、膜硬度相对较高的的氧化膜。而且随着氧化时间的增加,可以得到相对较大的膜厚度,但膜硬度相对降低。  相似文献   

4.
直流电阳极铝氧化膜制备的工艺条件   总被引:1,自引:0,他引:1  
通过对工业纯铝L2进行直流电阳极氧化来考察氧化时间、氧化电压对氧化膜厚度及硬度的影响,并对经阳极氧化的试样横截面进行SEM和EDS测试分析,结果表明电解液成分H2SO4浓度为200g/L、Al2O3浓度为1g/L,直流氧化电压为10V,氧化时间为40min,温度为20±1℃的条件下,可以获得均匀、与试样基体结合紧密、膜硬度相对较高的的氧化膜。而且随着氧化时间的增加,可以得到相对较大的膜厚度,但膜硬度相对降低。  相似文献   

5.
以草酸亚铁(FeC_2O_4·2H_2O)在高纯氩气(氩气含量≥99.999%)中的热重-差热(TG-DTA)分析为理论依据,利用X射线衍射仪(XRD)、热场发射扫描电子显微镜(SEM)和高分辨透射电子显微镜(TEM),分别对FeC_2O_4·2H_2O在氩气中热分解最终产物进行物相和形貌表征。研究结果表明:FeC_2O_4·2H_20在高纯氩气中热分解过程分为两个阶段:第一个阶段是在室温到255℃之间,FeC_2O_4·2H_2O失去结晶水变为FeC_2O_4;第二阶段是255℃到520℃之间,FeC_2O_4受热分解为Fe_3O_4。在高纯氩气中,以6℃/min升温速率从室温升520℃并在520℃,保温20 min,热分解草酸亚铁时,获得了粒径为约40~60 nm的球形Fe_3O_4颗粒。  相似文献   

6.
铝合金表面高耐磨自润滑硬质阳极氧化膜的制备   总被引:2,自引:1,他引:2  
以硫酸、草酸、氨基磺酸为基础电解液,分别添加0,5,15和25mL/L的PTFE乳液,在2024铝合金表面制备了PTFE复合硬质Al2O3氧化膜.利用扫描电镜、硬度计和摩擦磨损试验机等手段,对制备氧化膜的组织结构与性能及其复合机理进行了研究.结果表明:随着PTFE添加量的增加,氧化膜的厚度由没有添加PTFE样品的42μm增加到了51μm;硬度呈现先增加后降低的趋势,硬度最高为417HV.当PTFE乳液的添加量为25mL/L时,磨损时的失重量为7mg,是没有添加PTFE颗粒样品的三分之一.磨损时复合在氧化膜中的PTFE与对摩擦件接触时可形成润滑膜层,在保持高硬度的同时降低了摩擦系数,提高了膜的耐磨和自润滑性能.  相似文献   

7.
以葡萄糖为碳源,以聚乙烯吡咯烷酮( PVP)为表面活性剂,在碱性条件下用水合肼还原氯化铁,采用两步水热法制备Fe3 O4/C磁性纳米粒子,并采用X-射线衍射仪( XRD)、扫描电子显微镜( SEM)、透射电子显微镜( TEM)对产物进行表征。结果表明:产物为碳包覆纳米四氧化三铁核壳结构,其直径为300~600 nm,晶化程度较高。  相似文献   

8.
采用一种简单的两步两相法合成了单分散性十二硫醇包裹金纳米颗粒(DDT AuNPs,直径约为10 nm),以硅片、玻璃片等为基底,利用浸渍提拉法制备了金纳米颗粒(AuNPs)自组装膜.通过扫描电子显微镜(SEM)、紫外 可见光(UV-vis)光谱等表征手段研究了自组装膜的表面形貌以及表面等离子体共振特征,以一氧化碳(CO)低温氧化做为模型反应研究了其催化性能.研究表明,利用该方法制备的AuNPs自组装薄膜具有表面等离子体共振性能,有望被用于化学和生物传感方面.同时,这种薄膜在催化领域具有潜在的应用前景.  相似文献   

9.
实验通过化学共沉淀法,得到了亲水性磁性纳米Fe3O4,反复清洗过滤、晾干,得到磁性纳米Fe3O4颗粒,并分别对不同实验条件得到的实验产物进行分析,当反应物以1 moL亚铁离子∶2 moL铁离子∶8 moL氢氧根离子的比例进行反应时,得到的Fe3O4纳米颗粒的导电性和磁性最佳.  相似文献   

10.
对ZK60镁合金在硅酸盐体系、不同的电源参数情况下进行微弧氧化研究.通过实验分析,得到如下结果:微弧氧化时间对膜层的耐蚀性能有较大的影响.当膜层生长到一定厚度后,耐蚀性随微弧氧化时间的延长而变差;当电流较小时,膜层均匀,孔洞较小,当电流增大时,膜层粗糙,孔洞变大,并且容易产生裂纹;KF对镁合金微弧氧化膜层的生成有很好的促进作用,当加入KF为12g/L时,膜层厚度较没加KF增加一倍多,耐蚀性也得到很大提高.当F-浓度过高时,生成的膜层粗糙,而且容易脱落.在电解液中加入纳米SiC颗粒对微弧氧化膜层的厚度和耐蚀性无明显影响.  相似文献   

11.
 以纯铝为基材,在微弧氧化电解液中添加不同含量的纳米ZrO2颗粒进行微弧氧化,制备了ZrO2复合微弧氧化膜层。采用SEM 和EDS 观察并分析微弧氧化复合膜层表面形貌和膜层成分,研究不同含量纳米ZrO2颗粒的添加对微弧氧化复合膜层硬度和耐蚀性的影响。结果表明,微弧氧化膜及其复合膜层表面粗糙不平,纳米ZrO2颗粒的添加使得微弧氧化复合膜层裂纹减少,孔径减小,硬度和耐蚀性提高。  相似文献   

12.
铝合金阳极氧化膜的微观结构分析   总被引:3,自引:0,他引:3  
使用透射电镜观察了铝合金阳极氧化膜的微观结构,发现了阳极氧化膜的阻挡层与多孔层以及独特的六解形胞孔结构,氧化膜胞孔的孔道沿氧化膜表面向铝合金基体方向呈收缩趋势,这与阳极氧化过程中电压升高对多孔结构生长的影响有关。结合阳极氧化膜生长环境以及氧化膜的生长模型,探讨了氧化膜多孔结构的生长方式。  相似文献   

13.
从纳米级阳极氧化铝(AAO)膜对应用的重要性入手,主要简述AAO膜的制备、形成机理、自结构特点及结构调整方法。  相似文献   

14.
用电化学交流阻抗法研究铝合金表面稀土转化膜   总被引:5,自引:0,他引:5  
应用电化学阻抗谱(EIS)研究了铝合金表面稀土膜的成膜过程和机理,并通过测试极化曲线,比较了不同极化电位、不同pH值对层耐蚀性的影响,结果表明在铈盐溶液中可在铝合金表面成膜,与成膜过程相对应的EIS变化清楚地显示膜层的变化,转化膜层具有良好的耐蚀能力。  相似文献   

15.
微米铝粉活性及氧化膜厚度研究   总被引:2,自引:1,他引:1  
提出了计算微米级铝粉平均氧化膜厚度的经验公式.使用SEM、气体容量法、激光粒度仪及质谱仪对两个系列共21种数均粒径的微米铝粉进行了形貌、活性铝质量分数、粒度分布与成分测试,分析了微米铝粉的数均粒径与其氧化膜厚度之间的规律.结果表明,微米铝粉的平均氧化膜厚度与数均粒径为指数关系,并存在一个与铝粉纯度相关的上限值.  相似文献   

16.
纳米孔阵列阳极氧化铝膜的制备与形貌观测   总被引:1,自引:0,他引:1  
报道了用阳极氧化法在高纯铝片上制备含有纳米孔阵列的阳极氧化名膜技术,并用原子力显微镜(AFM)和扫描电子显微镜(SEM)对样品形貌进行了分析。结果表明,阳极氧化处理后的铝片明显地分成了未反应的铝、阻挡层氧化铝和多孔层氧化铝3层结构,且阻挡层处在铝和多孔层之间,具有弧形底部。多孔层氧化铝中孔的大小约为50nm,孔间距约为100nm,且这些孔有规律地排列形成纳米孔阵列。  相似文献   

17.
利用自制的氧化槽,结合恒压二次氧化的方法制备出有序的氧化铝模板,每个氧化槽每次可以制备2~4个模板,而且制备步骤简化,极大提高了氧化铝模板的制备效率.采用恒压直流电沉积方法在制备的氧化铝模板的孔中成功组装出了钴纳米线阵列,并分别用SEM、TEM、EDS对其进行了表征,结果显示,制备的钴纳米线阵列排列整齐、粗细均匀,直径约为50 nm,长度约为20~30μm,其长径比为300~1 000,与氧化铝模板的参数一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号