首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large isospin symmetry breaking found in the X(3872) decay is investigated by looking into the transfer strength from the \({{c}\bar{c}}\) quarkonium to the two-meson states: \({c\bar{c} \rightarrow D^{0}\overline{D}^{*0}, D^{+} D^{*-} , J /\psi\omega, {\rm and} \, J /\psi\rho}\) . The widths of the \({\rho}\) and \({\omega}\) mesons are taken into account in the calculation. It is found that very narrow \({J /\psi\omega}\) and \({J /\psi\rho}\) peaks appear at the \({D^{0}\overline{D}^{*0}}\) threshold. These narrow peaks appear provided that the strength of the \({D^{0}\overline{D}^{*0}}\) component is large around the threshold. The large width of the \({\rho}\) meson enhances the isospin-one component in the transfer strength considerably, which reduces the ratio \({{\rm Br}(X \rightarrow J /\psi\omega)/{\rm Br}(X \rightarrow J /\psi\rho)}\) down to 2.5.  相似文献   

2.
We prove that self-avoiding walk on ${\mathbb{Z}^d}$ is sub-ballistic in any dimension d ≥ 2. That is, writing ${\| u \|}$ for the Euclidean norm of ${u \in \mathbb{Z}^d}$ , and ${\mathsf{P_{SAW}}_n}$ for the uniform measure on self-avoiding walks ${\gamma : \{0, \ldots, n\} \to \mathbb{Z}^d}$ for which γ 0 = 0, we show that, for each v > 0, there exists ${\varepsilon > 0}$ such that, for each ${n \in \mathbb{N}, \mathsf{P_{SAW}}_n \big( {\rm max}\big\{\| \gamma_k \| : 0 \leq k \leq n\big\} \geq vn \big) \leq e^{-\varepsilon n}}$ .  相似文献   

3.
For the Schrödinger map equation \({u_t = u \times \triangle u \, {\rm in} \, \mathbb{R}^{2+1}}\) , with values in S 2, we prove for any \({\nu > 1}\) the existence of equivariant finite time blow up solutions of the form \({u(x, t) = \phi(\lambda(t) x) + \zeta(x, t)}\) , where \({\phi}\) is a lowest energy steady state, \({\lambda(t) = t^{-1/2-\nu}}\) and \({\zeta(t)}\) is arbitrary small in \({\dot H^1 \cap \dot H^2}\) .  相似文献   

4.
We consider an m-dimensional analytic cocycle \({\mathbb{T} \times \mathbb{R}^m \ni (x, \vec{\psi}) \mapsto (x + \omega, A (x) \cdot \vec{\psi}) \in \mathbb{T} \times \mathbb{R}^m}\) , where \({\omega \notin \mathbb{Q}}\) and \({A \in C^\omega (\mathbb{T}, \mathrm{Mat}_m (\mathbb{R}))}\) . Assuming that the d × d upper left corner block of A is typically large enough, we prove that the d largest Lyapunov exponents associated with this cocycle are bounded away from zero. The result is uniform relative to certain measurements on the matrix blocks forming the cocycle. As an application of this result, we obtain nonperturbative (in the spirit of Sorets–Spencer theorem) positive lower bounds of the nonnegative Lyapunov exponents for various models of band lattice Schrödinger operators.  相似文献   

5.
In this paper we study soliton-like solutions of the variable coefficients, the subcritical gKdV equation $$u_t + (u_{xx} -\lambda u + a(\varepsilon x) u^m )_x =0,\quad {\rm in} \quad \mathbb{R}_t\times\mathbb{R}_x, \quad m=2,3\,\, { \rm and }\,\, 4,$$ with ${\lambda\geq 0, a(\cdot ) \in (1,2)}$ a strictly increasing, positive and asymptotically flat potential, and ${\varepsilon}$ small enough. In previous works (Mu?oz in Anal PDE 4:573?C638, 2011; On the soliton dynamics under slowly varying medium for generalized KdV equations: refraction vs. reflection, SIAM J. Math. Anal. 44(1):1?C60, 2012) the existence of a pure, global in time, soliton u(t) of the above equation was proved, satisfying $$\lim_{t\to -\infty}\|u(t) - Q_1(\cdot -(1-\lambda)t) \|_{H^1(\mathbb{R})} =0,\quad 0\leq \lambda<1,$$ provided ${\varepsilon}$ is small enough. Here R(t, x) := Q c (x ? (c ? ??)t) is the soliton of R t +? (R xx ??? R + R m ) x =?0. In addition, there exists ${\tilde \lambda \in (0,1)}$ such that, for all 0?<??? <?1 with ${\lambda\neq \tilde \lambda}$ , the solution u(t) satisfies $$\sup_{t\gg \frac{1}{\varepsilon}}\|u(t) - \kappa(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}\lesssim \varepsilon^{1/2}.$$ Here ${{\rho'(t) \sim (c_\infty(\lambda) -\lambda)}}$ , with ${{\kappa(\lambda)=2^{-1/(m-1)}}}$ and ${{c_\infty(\lambda)>\lambda}}$ in the case ${0<\lambda<\tilde\lambda}$ (refraction), and ${\kappa(\lambda) =1}$ and c ??(??)?<??? in the case ${\tilde \lambda<\lambda<1}$ (reflection). In this paper we improve our preceding results by proving that the soliton is far from being pure as t ?? +???. Indeed, we give a lower bound on the defect induced by the potential a(·), for all ${{0<\lambda<1, \lambda\neq \tilde \lambda}}$ . More precisely, one has $$\liminf_{t\to +\infty}\| u(t) - \kappa_m(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}>rsim \varepsilon^{1 +\delta},$$ for any ${{\delta>0}}$ fixed. This bound clarifies the existence of a dispersive tail and the difference with the standard solitons of the constant coefficients, gKdV equation.  相似文献   

6.
The symmetric algebra ${S(\mathfrak{g})}$ over a Lie algebra ${\mathfrak{g}}$ has the structure of a Poisson algebra. Assume ${\mathfrak{g}}$ is complex semisimple. Then results of Fomenko–Mischenko (translation of invariants) and Tarasov construct a polynomial subalgebra ${{\mathcal {H}} = {\mathbb C}[q_1,\ldots,q_b]}$ of ${S(\mathfrak{g})}$ which is maximally Poisson commutative. Here b is the dimension of a Borel subalgebra of ${\mathfrak{g}}$ . Let G be the adjoint group of ${\mathfrak{g}}$ and let ? = rank ${\mathfrak{g}}$ . Using the Killing form, identify ${\mathfrak{g}}$ with its dual so that any G-orbit O in ${\mathfrak{g}}$ has the structure (KKS) of a symplectic manifold and ${S(\mathfrak{g})}$ can be identified with the affine algebra of ${\mathfrak{g}}$ . An element ${x\in \mathfrak{g}}$ will be called strongly regular if ${\{({\rm d}q_i)_x\},\,i=1,\ldots,b}$ , are linearly independent. Then the set ${\mathfrak{g}^{\rm{sreg}}}$ of all strongly regular elements is Zariski open and dense in ${\mathfrak{g}}$ and also ${\mathfrak{g}^{\rm{sreg}}\subset \mathfrak{g}^{\rm{ reg}}}$ where ${\mathfrak{g}^{\rm{reg}}}$ is the set of all regular elements in ${\mathfrak{g}}$ . A Hessenberg variety is the b-dimensional affine plane in ${\mathfrak{g}}$ , obtained by translating a Borel subalgebra by a suitable principal nilpotent element. Such a variety was introduced in Kostant (Am J Math 85:327–404, 1963). Defining Hess to be a particular Hessenberg variety, Tarasov has shown that ${{\rm{Hess}}\subset \mathfrak{g}^{\rm{sreg}}}$ . Let R be the set of all regular G-orbits in ${\mathfrak{g}}$ . Thus if ${O\in R}$ , then O is a symplectic manifold of dimension 2n where n = b ? ?. For any ${O\in R}$ let ${O^{\rm{sreg}} = \mathfrak{g}^{\rm{sreg}} \cap O}$ . One shows that O sreg is Zariski open and dense in O so that O sreg is again a symplectic manifold of dimension 2n. For any ${O\in R}$ let ${{\rm{Hess}}(O) = {\rm{Hess}}\cap O}$ . One proves that Hess(O) is a Lagrangian submanifold of O sreg and that $${\rm{Hess}} = \sqcup_{O\in R}{\rm{Hess}}(O).$$ The main result of this paper is to show that there exists simultaneously over all ${O\in R}$ , an explicit polarization (i.e., a “fibration” by Lagrangian submanifolds) of O sreg which makes O sreg simulate, in some sense, the cotangent bundle of Hess(O).  相似文献   

7.
Simon Širca 《Few-Body Systems》2014,55(8-10):893-897
In a recent set of measurements at Jefferson Laboratory, we have studied the missing-momentum dependence of beam-target asymmetries in exclusive \({\overrightarrow{^3{{\rm He}}}({{\rm e}},{\rm e}'{\rm p}){\rm pn}, \overrightarrow{^3{{\rm He}}}({{\rm e}},{\rm e}'{\rm p}){\rm d} }\) , and \({\overrightarrow{^3{{\rm He}}}({{\rm e}},{\rm e}'{\rm d}){\rm p}}\) channels at a previously unattainable level of precision and unreached range in missing momenta. We have also measured single-spin asymmetries in the processes \({\overrightarrow{^3{{\rm He}}}({\vec{{\rm e}}},{\rm e}')}\) and \({\overrightarrow{^3{{\rm He}}}({{\rm \vec{e}}},{\rm e}'{\rm n})}\) , where the nuclei were polarized vertically. Preliminary results are presented.  相似文献   

8.
DIPTIMOY GHOSH 《Pramana》2012,79(4):895-898
A comprehensive study of the impact of new-physics operators with different Lorentz structures on decays involving the b ?? s ?? ?+? ?? ? transition is performed. The effects of new vector?Caxial vector (VA), scalar?Cpseudoscalar (SP) and tensor (T) interactions on the differential branching ratios, forward?Cbackward asymmetries (A FB??s), and direct CP asymmetries of ${\bar B}_{\rm s}^0 \to \mu^+ \mu^-$ , ${\bar B}_{\rm d}^0 \to$ $ X_{\rm s} \mu^+ \mu^-$ , ${\bar B}_{\rm s}^0 \to \mu^+ \mu^- \gamma$ , ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ , and ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ are examined. In ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ , we also explore the longitudinal polarization fraction f L and the angular asymmetries $A_{\rm T}^{(2)}$ and A LT, the direct CP asymmetries in them, as well as the triple-product CP asymmetries $A_{\rm T}^{\rm (im)}$ and $A^{\rm (im)}_{\rm LT}$ . While the new VA operators can significantly enhance most of the observables beyond the Standard Model predictions, the SP and T operators can do this only for A FB in ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ .  相似文献   

9.
Let the pair of operators, (H, T), satisfy the weak Weyl relation: $$T{\rm e}^{-itH}={\rm e}^{-itH}(T+t),$$ where H is self-adjoint and T is closed symmetric. Suppose that g is a real-valued Lebesgue measurable function on ${\mathbb {R}}$ such that ${g\in C^2(\mathbb {R}\backslash K)}$ for some closed subset ${K\subset\mathbb {R}}$ with Lebesgue measure zero. Then we can construct a closed symmetric operator D such that (g(H), D) also obeys the weak Weyl relation.  相似文献   

10.
A few-body type computation is performed for a three-charge-particle collision with participation of a slow antiproton ${\bar{\rm{p}}}$ and a muonic muonium atom (true muonium), i.e. a bound state of two muons ${(\mu^{+}\mu^{-})}$ in its ground state. The total cross section of the following reaction ${\bar{\rm p}+(\mu^{+}\mu^{-}) \rightarrow \bar{\rm{H}}_{\mu} + \mu^{-}}$ , where muonic anti-hydrogen ${\bar{\rm{H}}_{\mu}=(\bar{\rm p}\mu^{+})}$ is a bound state of an antiproton and positive muon, is computed in the framework of a set of coupled two-component Faddeev-Hahn-type equation. A better known negative muon transfer low energy three-body reaction: ${{\rm t}^{+} + ({\rm d}^{+}\mu^{-})\rightarrow ({\rm t}^{+}\mu^{-}) + {\rm d}^{+}}$ is also computed as a test system. Here, t+ is triton and d+ is deuterium.  相似文献   

11.
The nucleus $\ensuremath {\rm ^{127}Sb}$ , which is on the neutron-rich periphery of the $\ensuremath \beta$ -stability region, has been populated in complex nuclear reactions involving deep-inelastic and fusion-fission processes with $\ensuremath {\rm {}^{136}Xe}$ beams incident on thick targets. The previously known isomer at 2325 keV in $\ensuremath {\rm {}^{127}Sb}$ has been assigned spin and parity $\ensuremath 23/2^+$ , based on the measured $\ensuremath \gamma$ - $\ensuremath \gamma$ angular correlations and total internal conversion coefficients. The half-life has been determined to be 234(12) ns, somewhat longer than the value reported previously. The 2194 keV state has been assigned $\ensuremath J^{\pi} = 19/2^+$ and identified as an isomer with $\ensuremath T_{1/2} = 14(1) {\rm ns}$ , decaying by two $\ensuremath E2$ branches. The observed level energies and transition strengths are compared with the predictions of a shell model calculation. Two $\ensuremath 15/2^+$ states have been identified close in energy, and their properties are discussed in terms of mixing between vibrational and three-quasiparticle configurations.  相似文献   

12.
Three-charge-particle collisions with participation of ultra-slow antiprotons ( \(\overline {\rm {p}}\) ) is the subject of this work. Specifically we compute the total cross sections and corresponding thermal rates of the following three-body reactions: \(\overline {\rm p}+(e^+e^-) \rightarrow \overline {\rm {H}} + e^-\) and \(\overline {\rm p}+(\mu ^+\mu ^-) \rightarrow \overline {\rm {H}}_{\mu } + \mu ^-\) , where \(e^-(\mu ^-)\) is an electron (muon) and \(e^+(\mu ^+)\) is a positron (antimuon) respectively, \(\overline {\rm {H}}=(\overline {\rm p}e^+)\) is an antihydrogen atom and \(\overline {\rm {H}}_{\mu }=(\overline {\rm p}\mu ^+)\) is a muonic antihydrogen atom, i.e. a bound state of \(\overline {\rm {p}}\) and μ +. A set of two-coupled few-body Faddeev-Hahn-type (FH-type) equations is numerically solved in the framework of a modified close-coupling expansion approach.  相似文献   

13.
Gaussian Multiplicative Chaos is a way to produce a measure on \({\mathbb{R}^d}\) (or subdomain of \({\mathbb{R}^d}\) ) of the form \({e^{\gamma X(x)} dx}\) , where X is a log-correlated Gaussian field and \({\gamma \in [0, \sqrt{2d})}\) is a fixed constant. A renormalization procedure is needed to make this precise, since X oscillates between ?∞ and ∞ and is not a function in the usual sense. This procedure yields the zero measure when \({\gamma = \sqrt{2d}}\) . Two methods have been proposed to produce a non-trivial measure when \({\gamma = \sqrt{2d}}\) . The first involves taking a derivative at \({\gamma = \sqrt{2d}}\) (and was studied in an earlier paper by the current authors), while the second involves a modified renormalization scheme. We show here that the two constructions are equivalent and use this fact to deduce several quantitative properties of the random measure. In particular, we complete the study of the moments of the derivative multiplicative chaos, which allows us to establish the KPZ formula at criticality. The case of two-dimensional (massless or massive) Gaussian free fields is also covered.  相似文献   

14.
The primary goal of KamLAND is a search for the oscillation of \({\bar{\nu }}_\mathrm{e}\) ’s emitted from distant power reactors. The long baseline, typically 180 km, enables KamLAND to address the oscillation solution of the “solar neutrino problem” with \({\bar{\nu }}_{e} \) ’s under laboratory conditions. KamLAND found fewer reactor \({\bar{\nu }}_{e} \) events than expected from standard assumptions about \(\overline{\nu }_e\) propagation at more than 9 \(\sigma \) confidence level (C.L.). The observed energy spectrum disagrees with the expected spectral shape at more than 5 \(\sigma \) C.L., and prefers the distortion from neutrino oscillation effects. A three-flavor oscillation analysis of the data from KamLAND and KamLAND + solar neutrino experiments with CPT invariance, yields \(\Delta m_{21}^2 \) = [ \(7.54_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) , \(7.53_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) ], tan \(^{2}\theta _{12}\) = [ \(0.481_{-0.080}^{+0.092} \) , \(0.437_{-0.026}^{+0.029} \) ], and sin \(^{2}\theta _{13}\) = [ \(0.010_{-0.034}^{+0.033} \) , \(0.023_{-0.015}^{+0.015} \) ]. All solutions to the solar neutrino problem except for the large mixing angle region are excluded. KamLAND also demonstrated almost two cycles of the periodic feature expected from neutrino oscillation effects. KamLAND performed the first experimental study of antineutrinos from the Earth’s interior so-called geoneutrinos (geo \({\bar{\nu }}_{e} \) ’s), and succeeded in detecting geo \({\bar{\nu }}_{e} \) ’s produced by the decays of \(^{238}\) U and \(^{232}\) Th within the Earth. Assuming a chondritic Th/U mass ratio, we obtain \(116_{-27}^{+28} {\bar{\nu }}_{e}\) events from \(^{238}\) U and \(^{232}\) Th, corresponding a geo \({\bar{\nu }}_{e}\) flux of \(3.4_{-0.8}^{+0.8}\times \) 10 \(^{6}\) cm \(^{-2}\)  s \(^{-1}\) at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo \({\bar{\nu }}_{e} \) rate.  相似文献   

15.
16.
In this paper we study the Liouville-type properties for solutions to the steady incompressible Euler equations with forces in ${\mathbb {R}^N}$ . If we assume “single signedness condition” on the force, then we can show that a ${C^1 (\mathbb {R}^N)}$ solution (v, p) with ${|v|^2+ |p| \in L^{\frac{q}{2}}(\mathbb {R}^N),\,q \in (\frac{3N}{N-1}, \infty)}$ is trivial, v = 0. For the solution of the steady Navier–Stokes equations, satisfying ${v(x) \to 0}$ as ${|x| \to \infty}$ , the condition ${\int_{\mathbb {R}^3} |\Delta v|^{\frac{6}{5}} dx < \infty}$ , which is stronger than the important D-condition, ${\int_{\mathbb {R}^3} |\nabla v|^2 dx < \infty}$ , but both having the same scaling property, implies that v = 0. In the appendix we reprove Theorem 1.1 (Chae, Commun Math Phys 273:203–215, 2007), using the self-similar Euler equations directly.  相似文献   

17.
In our previous coupled channel analysis based on the Cornell effective quark–quark interaction, it was indicated that the ${\psi(3S)}$ solution corresponding to ${\psi(4040)}$ originates from a ${{\rm D}^{^{*}}\overline{{\rm D}}^{*}}$ channel state. In this article, we report on a simultaneous analysis of the ${\psi}$ - and ${\Upsilon}$ -family states. The most conspicuous outcome is a finding that the ${\Upsilon(5S)}$ solution corresponding to ${\Upsilon(10860)}$ originates from a ${{\rm B}^{*}\overline{{\rm B}}^{*}}$ channel state, very much like ${\psi(3S)}$ . Some other characteristics of the result, including the induced very large SD mixing and relation of some of the solutions with newly observed heavy quarkonia-like states are discussed.  相似文献   

18.
The space \({\mathcal{D}_\Gamma^\prime}\) of distributions having their wavefront sets in a closed cone \({\Gamma}\) has become important in physics because of its role in the formulation of quantum field theory in curved spacetime. In this paper, the topological and bornological properties of \({\mathcal{D}_\Gamma^\prime}\) and its dual \({\mathcal{E}_\Lambda^\prime}\) are investigated. It is found that \({\mathcal{D}_\Gamma^\prime}\) is a nuclear, semi-reflexive and semi-Montel complete normal space of distributions. Its strong dual \({\mathcal{E}_\Lambda^\prime}\) is a nuclear, barrelled and (ultra)bornological normal space of distributions which, however, is not even sequentially complete. Concrete rules are given to determine whether a distribution belongs to \({\mathcal{D}_\Gamma^\prime}\) , whether a sequence converges in \({\mathcal{D}_\Gamma^\prime}\) and whether a set of distributions is bounded in \({\mathcal{D}_\Gamma^\prime}\) .  相似文献   

19.
Zs. Podolyák  S. J. Steer  S. Pietri  M. Górska  P. H. Regan  D. Rudolph  A. B. Garnsworthy  R. Hoischen  J. Gerl  H. J. Wollersheim  H. Grawe  K. H. Maier  F. Becker  P. Bednarczyk  L. Cáceres  P. Doornenbal  H. Geissel  J. Grebosz  A. Kelic  I. Kojouharov  N. Kurz  F. Montes  W. Prokopowicz  T. Saito  H. Schaffner  S. Tashenov  A. Heinz  T. Kurtukian-Nieto  G. Benzoni  M. Pfützner  A. Jungclaus  D. L. Balabanski  C. Brandau  B. A. Brown  A. M. Bruce  W. N. Catford  I. J. Cullen  Zs. Dombrádi  M. E. Estevez  W. Gelletly  G. Ilie  J. Jolie  G. A. Jones  M. Kmiecik  F. G. Kondev  R. Krücken  S. Lalkovski  Z. Liu  A. Maj  S. Myalski  S. Schwertel  T. Shizuma  P. M. Walker  E. Werner-Malento  O. Wieland 《The European Physical Journal A - Hadrons and Nuclei》2009,42(3):489-493
Heavy neutron-rich nuclei have been populated through the relativistic fragmentation of a $\ensuremath ^{208}_{\ 82}{\rm Pb}$ beam at $\ensuremath E/A = 1$ GeV on a $\ensuremath 2.5 {\rm g/cm^2}$ thick Be target. The synthesised nuclei were selected and identified in-flight using the fragment separator at GSI. Approximately 300 ns after production, the selected nuclei were implanted in an $\ensuremath \sim 8$ mm thick perspex stopper, positioned at the centre of the RISING $\ensuremath \gamma$ -ray detector spectrometer array. A previously unreported isomer with a half-life $\ensuremath T_{1/2} = 163(5)$ ns has been observed in the N = 126 closed-shell nucleus $\ensuremath ^{205}_{\ 79}{\rm Au}$ . Through $ \gamma$ -ray singles and $ \gamma$ - $ \gamma$ coincidence analysis a level scheme was established. The comparison with a shell model calculation tentatively identifies the spin-parity of the excited states, including the isomer itself, which is found to be $\ensuremath I^{\pi} = (19/2^+)$ .  相似文献   

20.
It is shown that for each finite number N of Dirac measures ${\delta_{s_n}}$ supported at points ${s_n \in {\mathbb R}^3}$ with given amplitudes ${a_n \in {\mathbb R} \backslash\{0\}}$ there exists a unique real-valued function ${u \in C^{0, 1}({\mathbb R}^3)}$ , vanishing at infinity, which distributionally solves the quasi-linear elliptic partial differential equation of divergence form ${-\nabla \cdot ( \nabla{u}/ \sqrt{1-| \nabla{u} |^2}) = 4 \pi \sum_{n=1}^N a_n \delta_{s_n}}$ . Moreover, ${u \in C^{\omega}({\mathbb R}^3\backslash \{s_n\}_{n=1}^N)}$ . The result can be interpreted in at least two ways: (a) for any number N of point charges of arbitrary magnitude and sign at prescribed locations s n in three-dimensional Euclidean space there exists a unique electrostatic field which satisfies the Maxwell-Born-Infeld field equations smoothly away from the point charges and vanishes as |s| ?? ??; (b) for any number N of integral mean curvatures assigned to locations ${s_n \in {\mathbb R}^3 \subset{\mathbb R}^{1, 3}}$ there exists a unique asymptotically flat, almost everywhere space-like maximal slice with point defects of Minkowski spacetime ${{\mathbb R}^{1, 3}}$ , having lightcone singularities over the s n but being smooth otherwise, and whose height function vanishes as |s| ?? ??. No struts between the point singularities ever occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号