首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of N‐methylimidazole (N‐MeIm) and N‐butylimidazole (N‐BuIm) with the complexes [PdCl2(PPh2py–P,N)] and [PdCl2(PPh2Etpy–P,N)] in the presence of NH4PF6 under N2 at room temperature afforded four new cationic Pd(II) complexes [PdCl(PPh2py–P,N)(N‐MeIm)](PF6) ( 1 ), [PdCl(PPh2py–P,N)(N‐BuIm)](PF6) ( 2 ), [PdCl(PPh2Etpy–P,N)(N‐MeIm)](PF6) ( 4 ) and [PdCl(PPh2Etpy‐P,N)(N‐BuIm)](PF6) ( 5 ) in good yields, where PPh2py is 2‐(diphenylphosphino)pyridine and PPh2Etpy is 2‐{2‐(diphenylphosphino)ethyl}pyridine). The complexes were fully characterized. The catalytic activities of these complexes were investigated for Suzuki–Miyaura cross‐coupling reactions at room temperature. Complex 2 exhibited excellent activity compared to other analogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A new nickel(II) σ‐aryl complex, trans‐chloro(9‐phenanthrenyl)bis(triphenylphosphine)nickel(II), was used as a precatalyst for the Suzuki–Miyaura coupling reactions of aryl chlorides. The catalytic conditions were optimized by investigating the cross‐coupling of p‐chloroanisole with phenylboronic acid. The results show that this complex is efficient for both electron‐rich and electron‐deficient aryl chlorides, though it gives better yields for activated arylboronic acids than deactivated ones. All isolated cross‐coupled biaryl products have been characterized by 1H and 13C NMR, and their spectral data are consistent with those reported. Side products from the coupling of arylboronic acid with the precatalyst complex have also been isolated and characterized, which is helpful for understanding the coupling mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A porphyrin‐based polymer with high surface area was synthesized using 5,10,15,20‐tetraphenylporphyrin through a one‐pot Friedel–Crafts alkylation reaction. Pd(II) was successfully supported on this polymer. This strategy provides an easy approach to produce highly stable Pd–porphyrin‐based polymer. The resulting Pd catalyst was characterized using Fourier transform infrared and X‐ray photoelectron spectroscopies, thermogravimetric analysis, scanning and transmission electron microscopies and N2 adsorption–desorption measurements. This porphyrin‐based polymer‐supported Pd was used as a heterogeneous catalyst for Suzuki–Miyaura coupling reaction in water. The results demonstrated that this Pd catalyst indeed exhibited excellent catalytic activity and recycling performance in water, even for inactive aryl chloride substrate. A new heterogeneous strategy for catalyzing the Suzuki–Miyaura reaction in water is provided.  相似文献   

4.
Polyethylene glycols (PEGs) with different molecular weights (Mw = 200, 400, 1000) were phosphorylated to their bis‐diphenyl phosphinite derivatives as stable solids which are melted in the range 140–160°C. These phosphorylated PEGs were used as ligands and reducing agents to generate nano‐Pd(0) catalysts in 2.5–8.3 nm. The nano‐Pd(0) particles supported on phosphorylated PEG200 were applied for the efficient Heck–Mizoroki carbon–carbon coupling reactions of ArX (X = Cl, Br, I) at 80–100°C under solvent‐free conditions and for the Suzuki–Miyaura coupling reaction in ethanol at 70°C. The catalyst was recycled easily and reused for several runs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
An α‐diimine Pd(II) complex containing chiral sec‐phenethyl groups, {bis[N,N′‐(4‐methyl‐2‐sec‐phenethylphenyl)imino]‐2,3‐butadiene}dichloropalladium (rac‐ C1 ), was synthesized and characterized. rac‐ C1 was applied as an efficient catalyst for the Suzuki–Miyaura cross‐coupling reaction between various aniline halides and arylboronic acid in PEG‐400–H2O at room temperature. Among a series of aniline halides, rac‐ C1 did not catalyze the cross‐coupling of aniline chlorides and fluorides but efficiently catalyzed the cross‐coupling of aniline bromides and iodides with phenylboronic acid. The catalytic activity reduced slightly with increasing steric hindrance of the aniline bromides. The complexes {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]‐2,3‐butadiene}dichloropalladium and {bis[N,N′‐(4‐fluoro‐2,6‐diphenylphenyl)imino]acenaphthene}dichloropalladium were also found to be efficient catalysts for the reaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A stable dimeric mono‐coordinated NHC–Pd(II) complex with bridging iodine atoms was synthesized and characterized by single‐crystal X‐ray diffraction. It has been successfully applied to the Suzuki–Miyaura cross‐coupling reaction under aerobic conditions. Good to excellent yields were obtained in most cases with the addition of H2O. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Bis(imino)pyridine palladium(II) complexes 3 and 4 of type [PdCl(L)PF6] are found to be efficient catalysts for Suzuki–Miyaura reactions of aryl halides and arylboronic acids. The reactions proceed smoothly to generate the corresponding biaryl compounds in moderate to excellent yields. The synthesis of various fluorinated biphenyl derivatives was successfully achieved by the complex 4 catalyzed the Suzuki–Miyaura reaction in the presence of surfactants bearing a long alkyl chain. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Metallomicelles of palladium(II) complex 4 are found to be an efficient catalyst for Suzuki–Miyaura reactions of aryl bromides substituted with a long alkyl chain and arylboronic acids at 80 °C in neat water. The reactions proceed smoothly to generate the corresponding biaryl compounds in moderate to excellent yields. Various biphenyl derivatives were successfully obtained by complex 4 catalysis of the Suzuki–Miyaura reactions in the absence of any surfactants in neat water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Schiff bases of 2‐(phenylthio)aniline, (C6H5)SC6H4N?CR (R = (o‐CH3)(C6H5), (o‐OCH3)(C6H5) or (o‐CF3)(C6H5)), and their palladium complexes (PdLCl2) were synthesized. The compounds were characterized using 1H NMR and 13C NMR spectroscopy and micro analysis. Also, electrochemical properties of the ligands and Pd(II) complexes were investigated in dimethylformamide–LiClO4 solution with cyclic and square wave voltammetry techniques. The Pd(II) complexes showed both reversible and quasi‐reversible processes in the ?1.5 to 0.3 V potential range. The synthesized Pd(II) complexes were evaluated as catalysts in Mizoroki–Heck and Suzuki–Miyaura cross‐coupling reactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A polyaniline‐anchored palladium catalyst was prepared and screened for coupling reactions of aryl halides. The robust and recyclable catalyst was effective in Mizoroki–Heck and Suzuki–Miyaura reactions of aryl bromides and aryl iodides. The catalyst system was further employed for one‐pot Wittig–Heck and Wittig–Suzuki combinations to build conjugated compounds in good conversions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Seeing the sites : The Suzuki–Miyaura reaction of substrates containing multiple coupling sites has been performed in a directed manner through the reactivity modulation of the boron moiety (see scheme). Several other strategies are also discussed.

  相似文献   


12.
The Suzuki–Miyaura reaction of aryl bromides with benzeneboronic acid catalyzed by bis(chloro)(2‐pyridylquinoxaline)palladium(II) was investigated. The scope of the bis(chloro)(2‐pyridylquinoxaline)palladium(II) was determined in toluene at 80 °C using KOH as base. Using a 0.1% molar ratio of bis(chloro)(2‐pyridylquinoxaline)palladium(II) C1 as a catalyst, aryl bromides reacted with benzeneboronic acid to afford diaryl derivatives in excellent yield. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A series of N‐heterocyclic carbene–PdCl2–imidazole [NHC–Pd(II)–Im] complexes were synthesized and the structure of most of them was unambiguously determined by X‐ray single‐crystal diffraction. The structure–activity relationship of these complexes was investigated for the Suzuki–Miyaura coupling between 4‐methoxyphenyl chloride and phenylboronic acid, and the effect of the NHCs and Im moieties were fully discussed. The sterically hindered IPr‐based complex showed the highest catalytic activity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The purpose of this work was to synthesize and characterize a new magnetic polymer nanosphere‐supported palladium(II) acetate catalyst for reactions requiring harsh conditions. In this regard, an air‐stable, moisture‐stable and highly efficient heterogenized palladium was synthesized by the coordination of palladium(II) acetate with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐grafted modified magnetic nanoparticles with a core–shell structure. The structure of the newly developed catalyst was characterized using various techniques. The catalytic activity of the resultant nano‐organometallic catalyst was evaluated in Mizoroki–Heck and Suzuki–Miyaura reactions to afford the corresponding coupling products in good to excellent yields. High selectivity as well as outstanding turnover number (14 143, 4900) and turnover frequency (28 296, 7424) values were recorded for the catalyst in Suzuki–Miyaura and Mizoroki–Heck reactions, respectively. Magnetic separation and recycling of the catalyst for at least six runs became possible without any significant loss of efficiency or any detectable palladium leaching.  相似文献   

15.
A new air‐stable Pd(II) complex containing a sulfonamide–Schiff base ligand has been synthesized, characterized and investigated as a catalyst for the Suzuki–Miyaura reactions of aryl halides with arylboronic acids. Theoretical calculations (B3LYP) and spectroscopic evidence suggest that the sulfonamide–Schiff base coordinates to the Pd centre through sulfonamide nitrogen (? SO2NH2) rather than imine (? CH?N). The complex shows excellent cross‐coupling activity with aryl bromides in water at room temperature and aryl chlorides in isopropanol at 60°C. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A nanosilica (derived from rice husk)‐anchored Pd(II)–Schiff base complex has been synthesized and characterized. This immobilized complex has been found to be a very effective and recyclable heterogeneous catalyst for the Suzuki–Miyaura cross‐coupling reaction of various aryl halides with arylboronic acid in aqueous medium under mild conditions. The products were identified using 1H NMR and mass spectral studies. This complex can be easily filtered out from the reaction medium and reused up to six times without significant loss of catalytic activity. Since the reaction proceeds under mild conditions in aqueous medium as well as the catalyst being recyclable, it provides an environmentally benign alternative route to the existing protocols for the Suzuki–Miyaura reaction.  相似文献   

17.
Kumada‐Tamao coupling polymerization of 1,4‐dialkoxy‐2‐bromo‐5‐(2‐chloromagnesiovinyl)benzene ( 1 ) and 1,4‐dialkoxy‐2‐(2‐bromovinyl)‐5‐chloromagnesiobenzene ( 2 ) with a Ni catalyst and Suzuki‐Miyaura coupling polymerization of 2‐{2‐[(2,5‐dialkoxy‐4‐iodophenyl)]vinyl}‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolane ( 3 ), its bromo counterpart 4 , and 2,5‐dialkoxy‐4‐(2‐bromovinyl)phenylboronic acid ( 5 ) with a Pd initiator were investigated under catalyst‐transfer condensation polymerization conditions for the synthesis of well‐defined poly(p‐phenylenevinylene) (PPV). The Kumada‐Tamao polymerization of vinyl Grignard‐type monomer 1 with Ni(dppp)Cl2 at room temperature did not proceed, whereas aryl Grignard‐type monomer 2 afforded oligomers of low molecular weight. Matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectra of the polymer obtained from 2 implied that the Grignard end group reacted with tetrahydrofuran to terminate polymerization. On the other hand, Suzuki‐Miyaura polymerization of vinyl boronic acid ester type monomers 3 and 4 and phenylboronic acid type monomer 5 with a Pd initiator and aqueous KOH at ?20 °C to room temperature yielded the corresponding PPV with high molecular weight within a few minutes. However, the molecular weight distribution was broad, and MALDI‐TOF mass spectra showed the peaks of polymers bearing no initiator unit at the chain end, as well as those of polymers with the initiator unit. These results indicated that intermolecular chain transfer of the Pd catalyst occurred. Dehalogenation and disproportionation of the growing end also took place as side reactions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2643‐2653  相似文献   

18.
We have investigated the requirements for efficient Pd‐catalyzed Suzuki–Miyaura catalyst‐transfer condensation polymerization (Pd‐CTCP) reactions of 2‐alkoxypropyl‐6‐(5‐bromothiophen‐2‐yl)‐3‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)pyridine ( 12 ) as a donor–acceptor (D –A) biaryl monomer. As model reactions, we first carried out the Suzuki–Miyaura coupling reaction of X–Py–Th–X′ (Th=thiophene, Py=pyridine, X, X′=Br or I) 1 with phenylboronic acid ester 2 by using tBu3PPd0 as the catalyst. Monosubstitution with a phenyl group at Th‐I mainly took place in the reaction of Br–Py–Th–I ( 1 b ) with 2 , whereas disubstitution selectively occurred in the reaction of I–Py–Th–Br ( 1 c ) with 2 , indicating that the Pd catalyst is intramolecularly transferred from acceptor Py to donor Th. Therefore, we synthesized monomer 12 by introduction of a boronate moiety and bromine into Py and Th, respectively. However, examination of the relationship between monomer conversion and the Mn of the obtained polymer, as well as the matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectra, indicated that Suzuki–Miyaura coupling polymerization of 12 with (o‐tolyl)tBu3PPdBr initiator 13 proceeded in a step‐growth polymerization manner through intermolecular transfer of the Pd catalyst. To understand the discrepancy between the model reactions and polymerization reaction, Suzuki–Miyaura coupling reactions of 1 c with thiopheneboronic acid ester instead of 2 were carried out. This resulted in a decrease of the disubstitution product. Therefore, step‐growth polymerization appears to be due to intermolecular transfer of the Pd catalyst from Th after reductive elimination of the Th‐Pd‐Py complex formed by transmetalation of polymer Th–Br with (Pin)B–Py–Th–Br monomer 12 (Pin=pinacol). Catalysts with similar stabilization energies of metal–arene η2‐coordination for D and A monomers may be needed for CTCP reactions of biaryl D–A monomers.  相似文献   

19.
A series of Pd–N‐heterocyclic carbene (Pd–NHC) complexes were synthesized and characterized by elemental analysis and spectroscopic methods. In addition, the molecular structures of 3c and 4c were determined by X‐ray diffraction studies. Finally, the performance of complexes 3 and 5 were studied on Suzuki–Miyaura reactions of phenylboronic acid with aryl bromides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Herein an efficient bottom‐up solution‐phase synthesis of N=9 armchair graphene nanoribbons (GNRs) is described. Catalyzed by Pd(PtBu3)2, Suzuki–Miyaura polymerization of a simple and readily available triaryl monomer provides a novel GNR precursor with a high molecular weight and excellent solubility. Upon cyclodehydrogenation, the resulting GNR exhibits semiconducting properties with an approximately 1.1 eV band gap (LUMO: ?3.52 eV; HOMO: ?4.66 eV) as characterized by UV/Vis‐NIR spectroscopy and cyclic voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号