首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ring‐opening polymerization (ROP) of p‐dioxanone (PDO) under microwave irradiation with triethylaluminum (AlEt3) or tin powder as catalyst was investigated. When the ROP of PDO was catalyzed by AlEt3, the viscosity‐average molecular weight (Mv) of poly(p‐dioxanone) (PPDO) reached 317,000 g mol?1 only in 30 min, and the yield of PPDO achieved 96.0% at 80 °C. Tin powder was successfully used as catalyst for synthesizing PPDO by microwave heating, and PPDO with Mv of 106,000 g mol?1 was obtained at 100 °C in 210 min. Microwave heating accelerated the ROP of PDO catalyzed by AlEt3 or tin powder, compared with the conventional heating method. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3207–3213, 2008  相似文献   

2.
A monomode microwave reactor was used for the synthesis of designed star‐shaped polymers, which were based on dipentaerythritol with six crystallizable arms of poly(ε‐caprolactone)‐b‐poly(L ‐lactide) (PCL‐b‐PLLA) copolymer via a two‐step ring‐opening polymerization (ROP). The effects of irradiation conditions on the molecular weight were studied. Microwave heating accelerated the ROP of CL and LLA, compared with the conventional heating method. The resultant hexa‐armed polymers were fully characterized by means of FTIR, 1H NMR spectrum, and GPC. The investigation of thermal properties and crystalline behaviors indicated that the crystalline behaviors of polymers were largely depended on the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Long reaction period (dozens of hours) is often required for the synthesis of conjugated polymers by palladium‐catalyzed Suzuki polymerization reaction. This work shows that microwave can accelerate Suzuki polymerization to realize the ultra‐rapid synthesis of conjugated polymers, here poly(9,9‐dihexylfluorene)s (PDHFs) as an example. The effects of reaction conditions on the polymerization have been systematically investigated, including the mode of microwave irradiation, microwave power, reaction temperature, reaction time, solvents, catalyst species, and catalyst concentrations. Compared with the conventional heating method (oil bath) for the synthesis of PDHFs (48 h, Mw = 20,000 g/mol), Suzuki polymerization under optimized microwave condition can yield PDHFs with higher molecular weight (Mw = 40,000 g/mol) in a much shorter time (14 min). The structures of obtained PDHFs samples are fully characterized spectroscopically, demonstrating well‐defined PDHFs have been prepared through microwave‐assisted (MA) Suzuki polymerization reaction. In addition, the mechanism of MA Suzuki polymerization is proposed preliminarily. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
D ,L ‐3‐Methylglycolide (MG) was synthesized via two step reactions with a good yield (42%). It was successfully polymerized in bulk with stannous octoate as a catalyst at 110 °C. The effects of the polymerization time and catalyst concentration on the molecular weight and monomer conversion were studied. Poly(D ,L ‐lactic acid‐co‐glycolic acid) (D ,L ‐PLGA50; 50/50 mol/mol) copolymers were successfully synthesized from the homopolymerization of MG with high polymerization rates and high monomer conversions under moderate polymerization conditions. 1H NMR spectroscopy indicated that the bulk ring‐opening polymerization of MG conformed to the coordination–insertion mechanism. 13C NMR spectra of D ,L ‐PLGA50 copolymers obtained under different experimental conditions revealed that the copolymers had alternating structures of lactyl and glycolyl. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4179–4184, 2000  相似文献   

5.
Anionic hydrogen‐transfer homopolymerization of N‐isopropylacrylamide (NIPAAm) was carried out using t‐BuOK as an initiator in DMF under microwave irradiation. After 100 W of microwave was irradiated to the reaction mixture at 140°C for 6 h in the temperature control mode, corresponding polymer was obtained in 10% yield. In the case of conventional oil bath heating, by contrast, corresponding polymer was not obtained in similar anionic polymerization conditions. With 100 W and 2.45 GHz of microwave irradiation, formation of the polymer was obtained. Microwave‐assisted anionic hydrogen‐transfer copolymerization of NIPPAm and acrylamide (AAm) led to the formation of thermo‐sensitive copolymers whose thermo‐sensitivity was controlled by the NIPAAm/AAm unit ratio. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2415–2419  相似文献   

6.
Summary: Microwave irradiation was used for the amidation of a nitrile with an amine with a freshly prepared zirconium-based heterogeneous catalyst. Microwave irradiation selectively heats the catalyst which enhances its activity as compared to conventional heating. The difference between microwave heating and conventional heating disappears when Zr(OH)4 is used instead of ZrO2, indicating a microwave-induced shift in the hydrolysis equilibrium, i.e. the distribution of ZrO2, ZrO(OH)2 and Zr(OH)4, of the zirconium-based catalyst. The catalyst efficiently catalyzes the amidation of valeronitrile with n-hexylamine with conventional as well as with microwave heating. Zr(OH)4 was also used for the polymerization of 6-aminocapronitrile using conventional and microwave heating. With both heating methods a relatively low molecular weight polymer with a Mn of 4000 g/mol was obtained in a sealed vessel, due to the presence of water and ammonia. A post-polymerization step under microwave irradiation, with active removal of water and ammonia shifts Mn to 10000 g/mol. Pressure decrease to facilitate water removal resulted in products with higher molecular weights. A pressure reduction to 50 Pa and operation in an argon atmosphere at 230 °C resulted in nylon-6 with a Mn of 65000 in rather short reaction times. Lower pressures led to end-biting and evaporation of the volatile ε-caprolactam at 230 °C. As a consequence the resulting product has than a much lower molecular weight. The combination of a heterogeneous zirconium based catalyst and microwave heating is promising for process intensification for nylon-6 production.  相似文献   

7.
The ring‐opening polymerization of ε‐caprolactone (ε‐CL), initiated by carboxylic acids such as benzoic acid and chlorinated acetic acids under microwave irradiation, was investigated; with this method, no metal catalyst was necessary. The product was characterized as poly(ε‐caprolactone) (PCL) by 1H NMR spectroscopy, Fourier transform infrared spectroscopy, ultraviolet spectroscopy, and gel permeation chromatography. The polymerization was significantly improved under microwave irradiation. The weight‐average molecular weight (Mw) of PCL reached 44,800 g/mol, with a polydispersity index [weight‐average molecular weight/number‐average molecular weight (Mw/Mn)] of 1.6, when a mixture of ε‐CL and benzoic acid (25/1 molar ratio) was irradiated at 680 W for 240 min, whereas PCL with Mw = 12,100 and Mw/Mn = 4.2 was obtained from the same mixture by a conventional heating method at 210 °C for 240 min. A degradation of the resultant PCL was observed during microwave polymerization with chlorinated acetic acids as initiators, and this induced a decrease in Mw of PCL. However, the degradation was hindered by benzoic acid at low concentrations. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 13–21, 2003  相似文献   

8.
Poly(trimethylene terephthalate) (PTT) was prepared by the ring‐opening polymerization of its cyclic dimer. Antimony(III) oxide, titanium(IV) butoxide, dibutyltin oxide, and titanium(IV) isopropoxide were used as catalysts. Among the catalysts, titanium(IV) butoxide was the most effective for the same reaction conditions. A weight‐average molecular weight of 63,500 g/mol was obtained from ring‐opening poly merization at 265 °C for 2 h in the presence of 0.5 mol % titanium(IV) butoxide. The PTTs obtained from the polymerization catalyzed with increasing amounts of antimony(III) oxide showed increasing weight‐average molecular weights and reaction conversions. When 1 mol % antimony(III) oxide was used, the weight‐average molecular weight was 32,000 g/mol and the conversion was 82% after 1 h of polymerization at 265 °C. In the case of the polymer catalyzed by titanium(IV) butoxide under the same conditions, the weight‐average molecular weight and conversion were 40,000 g/mol and 77% when 0.25 mol % was used, whereas 0.5 mol % catalyst produced a weight‐average molecular weight of 27,000 g/mol and a conversion of 95%. To get an acceptable molecular weight and relatively high reaction conversion, a catalyst concentration of at least 0.5 mol % was found to be necessary, in contrast to conventional condensation polymerizations, which require only about one‐tenth of this amount of the catalyst. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6801–6809, 2006  相似文献   

9.
To avoid organometallic catalysts in the synthesis of poly(1,5‐dioxepan‐2‐one), the enzymatic ring‐opening polymerization of 1,5‐dioxepan‐2‐one (DXO) was performed with lipase CA (derived from Candida antarctica) as a biocatalyst. A linear relationship between the number‐average molecular weight and monomer conversion was observed, and this suggested that the product molecular weight could be controlled by the stoichiometry of the reactants. The monomer consumption followed a first‐order rate law with respect to the monomer, and no chain termination occurred. Water acted as a chain initiator, but it could cause polymer hydrolysis when it exceeded an optimum level. An initial activation via the heating of the enzyme was sufficient to start the polymerization, as the monomer conversion occurred when samples were left at room temperature after an initial heating at 60 °C. A high lipase content led to a high monomer conversion as well as a high molecular weight. An increase in the monomer conversion and molecular weight was observed when the polymerization temperature was increased from 40 to 80 °C. A further increase in the polymerization temperature led to a decrease in the monomer conversion and molecular weight because of the denaturation of the enzyme at elevated temperatures. The polymerization behavior of DXO under lipase CA catalysis was compared with that of ε‐caprolactone (CL). The rate of monomer conversion of DXO was much faster than that of CL, and this may have been due to differences in their specificity toward lipase CA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4206–4216, 2005  相似文献   

10.
The homogeneous atom transfer radical polymerization (ATRP) of n‐butyl acrylate with CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine as a catalyst and ethyl 2‐bromoisobutyrate as an initiator was investigated. The kinetic plots of ln([M]0/[M]) versus the reaction time for the ATRP systems in different solvents such as toluene, anisole, N,N‐dimethylformamide, and 1‐butanol were linear throughout the reactions, and the experimental molecular weights increased linearly with increasing monomer conversion and were very close to the theoretical values. These, together with the relatively narrow molecular weight distributions (polydispersity index ~ 1.40 in most cases with monomer conversion > 50%), indicated that the polymerization was living and controlled. Toluene appeared to be the best solvent for the studied ATRP system in terms of the polymerization rate and molecular weight distribution among the solvents used. The polymerization showed zero order with respect to both the initiator and the catalyst, probably because of the presence of a self‐regulation process at the beginning of the reaction. The reaction temperature had a positive effect on the polymerization rate, and the optimum reaction temperature was found to be 100 °C. An apparent enthalpy of activation of 81.2 kJ/mol was determined for the ATRP of n‐butyl acrylate, corresponding to an enthalpy of equilibrium of 63.6 kJ/mol. An apparent enthalpy of activation of 52.8 kJ/mol was also obtained for the ATRP of methyl methacrylate under similar reaction conditions. Moreover, the CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine‐based system was proven to be applicable to living block copolymerization and living random copolymerization of n‐butyl acrylate with methyl methacrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3549–3561, 2002  相似文献   

11.
Novel biodegradable poly(carbonate‐ether)s (PCEs) with lower critical solution temperature (LCST) at body temperature were synthesized by copolymerization of CO2 and ethylene oxide (EO) under double metal cyanide (DMC) catalyst. The PCEs showed carbonate unit (CU) content of 1.0–42.4 mol % and molecular weight of 2.7–247 kg/mol, which exhibited reversible thermoresponsive feature in deionized water with LCST in a broad window from 21.5 to 84.1 °C. The LCST was highly sensitive to the CU content and the molecular weight of PCEs, and it showed a linear relation with CU content for PCEs with similar molecular weight. In particular, aqueous solution of PCE with a 26.0 mol % of CU showed an LCST around 36.1 °C, which was very close to the body temperature. Interestingly, it was found that the phase transition behavior changed with PCE concentration. For PCE with Mn of 2.7 kg/mol and CU content of 30.0 mol %, the LCST increased from 21.5 to 36.7 °C when the PCE concentration changed from 10 to 1 g/L. Dynamic light scattering indicated that the phase transition was possibly due to a coil‐to‐globule transition. The thermoresponsive biodegradable PCE with LCST at body temperature is promising for biomedical applications, especially for in vivo applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
High‐molecular‐weight poly(1,4‐butylene carbonate) (PBC) (Mn: 40,000?90,000) was prepared through the condensation polymerization of dimethyl carbonate (DMC) and 1,4‐butanediol (BD) in the presence of 0.05 mol % sodium alkoxide catalyst. The subsequent feeding of 15 mol % HOAOH, such as 1,6‐hexanediol, 1,5‐pentanediol, 1,4‐cyclohexanedimethanol, or 1,4‐benzenedimethanol and stirring at 190–150 °C converted the extremely thick high‐molecular‐weight polymer to low‐molecular‐weight macrodiols with GPC‐measured Mn ~2000. The analysis of the 1H NMR spectra indicated that the –A– units and 1,4‐butylene units were randomly distributed in the resulting oligomers. The chopping of the high‐molecular‐weight PBC using either triols or tetraols such as glycerol propoxylate, 1,1,1‐tris(hydroxymethyl)ethane, or pentaerythritol also afforded macropolyols containing branched chains with GPC‐measured Mn ~2000. When the chopped polymers were genuine PBCs, the resulting macrodiols or polyols were in a waxy state at room temperature. However, permanently oily compounds were obtained when the chopped polymers were prepared using 0.90 mole fraction of BD admixed with various other diols. The macrodiols and polyols synthesized in this study may have potential applications in the polyurethane industry. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1570–1580  相似文献   

13.
High molecular weight trans‐poly(9,9‐di‐n‐octylfluorene‐2,7‐vinylene) was prepared under reduced pressure in the presence of a well‐defined Schrock‐type catalyst, Mo(CHCMe2Ph)(N‐2,6‐Me2C6H3)[OCMe(CF3)2]2, in toluene. The effect of initial monomer concentration was found to be an important factor for preparing high molecular weight polymers with unimodal molecular weight distributions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2463–2470, 2001  相似文献   

14.
The copolymerization of propene with 7‐methyl‐1,6‐octadiene (MOD) catalyzed by Cp*TiMe3/B(C6F5)3 ( A ) and rac‐C2H4(Ind)2ZrCl2/methylaluminoxane ( B ) in toluene under 1 bar propene gave copolymers with unsaturated side chains. Under these conditions, catalyst A produced copolymers with an atactic backbone structure of type 1 , with 3.5–19.6 mol % MOD incorporation and weight‐average molecular weight = 0.7–2.7 × 105. Using catalyst B , copolymers 2 with 0.4–3.8 mol % MOD incorporation were prepared. The comonomer incorporation was a linear function of the feed ratio. The titanium catalyst A had a significantly higher affinity for MOD than the sterically more hindered zirconocene B . Postpolymerization modification of the side‐chain C?C bond allowed the facile introduction of a wide variety of functional groups. Epoxidation and especially ozonolysis of the C?C bond, to give ? CHO and ? COOH functionalized copolymers, proved to be very facile routes to functionalized polypropenes. According to monitoring by NMR, most of these transformations proceed in an essentially quantitative conversion. As an example of potential applications of such polymers, polypropenes with covalently attached dyes were prepared that are suitable for blending. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1484–1497, 2002  相似文献   

15.
We have investigated the effect of the concentration and molecular weight on the activity of polymeric silver(I)‐NHC (NHC = N‐heterocyclic carbene) catalyst complexes in ultrasound‐induced mechanochemical catalyst activation. A strong dependence of the turnover number (TON) on initial catalyst concentration was observed in the transesterification of vinyl acetate with benzyl alcohol. The main findings of this study are that the concentration and molecular weight effects on TON are caused by competition between mechanochemical catalyst activation and deactivation, most likely by reactive species produced during the sonication process. Performing the transesterification reaction under radical‐suppressing conditions resulted in a significant increase of TON. This result clearly demonstrates the increased catalyst lifetime when reducing the amount of sonochemical impurities, and it highlights the importance of controlling and suppressing secondary, sonochemical processes when using ultrasound‐induced mechanochemical generation of reactive species such as catalysts. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Ring‐opening polymerization of ?‐caprolactone was carried out smoothly and effectively with constant microwave powers of 170, 340, 510, and 680 W, respectively, with a microwave oven at a frequency of 2.45 GHz. The temperature of the polymerization ranged from 80 to 210 °C. Poly(?‐caprolactone) (PCL) with a weight‐average molar mass (Mw) of 124,000 g/mol and yield of 90% was obtained at 680 W for 30 min using 0.1% (mol/mol) stannous octanoate as a catalyst. When the polymerization was catalyzed by 1% (w/w) zinc powder, the Mw of PCL was 92,300 g/mol after the reaction mixture was irradiated at 680 W for 270 min. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1749–1755, 2002  相似文献   

17.
Conventional melt transesterification successfully produced high‐molecular‐weight segmented copolyesters. A rigid, high‐Tg polyester precursor containing the cycloaliphatic monomers, 2,2,4,4‐tetramethyl‐1,3‐cyclobutanediol, and dimethyl‐1,4‐cyclohexane dicarboxylate allowed molecular weight control and hydroxyl difunctionality through monomer stoichiometric imbalance in the presence of a tin catalyst. Subsequent polymerization of a 4000 g/mol polyol with monomers comprising the low‐Tg block yielded high‐molecular‐weight polymers that exhibited enhanced mechanical properties compared to a nonsegmented copolyester controls and soft segment homopolymers. Reaction between the polyester polyol precursor and a primary or secondary alcohol at melt polymerization temperatures revealed reduced transesterification of the polyester hard segment because of enhanced steric hindrance adjacent to the ester linkages. Differential scanning calorimetry, dynamic mechanical analysis, and tensile testing of the copolyesters supported the formation of a segmented multiblock architecture. Further investigations with atomic force microscopy uncovered unique needle‐like, interconnected, microphase separated surface morphologies. Small‐angle X‐ray scattering confirmed the presence of microphase separation in the segmented copolyesters bulk morphology. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Polyethers with unsymmetrical structures in the main chains and pendant chloromethyl groups were synthesized by the polyaddition of 3‐ethyl‐3‐(glycidyloxymethyl)oxetane (EGMO) with certain diacyl chlorides with quaternary onium salts or pyridine as catalysts. The unsymmetrical polyaddition of EGMO containing two different cyclic ether moieties such as oxirane and oxetane groups with terephthaloyl chloride proceeded smoothly in toluene at 90 °C for 6 h to give polymer 1 with a number‐average molecular weight (Mn) of 51,700 in a 93% yield when tetrabutylammonium bromide (TBAB) was used as a catalyst. The polyaddition also proceeded smoothly under the same conditions when other quaternary onium salts, such as tetrabutylammonium chloride, tetrabutylammonium iodide, tetrabutylphosphonium chloride, and tetrabutylphosphonium bromide, and pyridine were used as catalysts. However, without a catalyst no reaction occurred under the same reaction conditions. Polyadditions of EGMO with isophthaloyl chloride and adipoyl chloride gave polymer 2 (Mn = 28,700) and polymer 3 (Mn = 25,400) in 99 and 65% yields, respectively, under the same conditions. The chemical modification of the resulting polymer, polymer 1 , which contained reactive pendant chloromethyl groups, was also attempted with potassium 3‐phenyl‐2,5‐norbornadiene‐2‐carboxylate with TBAB as a phase‐transfer catalyst, and a polymer with 65 mol % pendant norbornadiene moieties was obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 368–375, 2001  相似文献   

19.
Carbon dioxide was incorporated into poly(glycidyl methacrylate‐co‐methyl methacrylate) by a solid‐phase reaction, which transformed the pendent oxirane moieties into cyclic carbonate moieties, with quaternary ammonium halide catalysts. The incorporation of carbon dioxide into the copolymer led to soluble carbonate‐containing polymers, whereas the incorporation of carbon dioxide into the glycidyl methacrylate homopolymer produced an insoluble product. The copolymer composition, reaction temperature, and catalyst amount affected the incorporation efficiency and the side reaction that caused crosslinking. Effective incorporation was achieved under the following reaction conditions: the glycidyl methacrylate content was less than approximately 50%, the temperature was greater than the glass‐transition temperature, and the catalyst concentration was 1.5–6 mol %. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3812–3817, 2004  相似文献   

20.
The synthesis of low‐molecular‐weight (weight‐average molecular weight < 45,000 g/mol) lactic acid polymers through the dehydropolycondensation of L ‐lactic acid was investigated. Polymerizations were carried out in solution with solvents (xylene, mesitylene, and decalin), without a solvent using different Lewis acid catalysts (tetraphenyl tin and tetra‐n‐butyldichlorodistannoxane), and at three different polymerization temperatures (143, 165, and 190 °C). The products were characterized with differential scanning calorimetry, size exclusion chromatography, vapor pressure osmometry, 13C NMR, and matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF). The resulting polymers contained less than 1 mol % lactide, as shown by NMR. The number‐average molecular weights were calculated from the ratio of the area peaks of ester carbonyl and carboxylic acid end groups via 13C NMR. The stereosequences were analyzed by 13C NMR spectroscopy on the basis of triad effects. Tetraphenyl tin was an effective transesterification catalyst, and the randomization of the stereosequence at 190 °C was observed. In contrast, the distannoxane catalyst caused comparatively less transesterification reaction, and the randomization of the stereosequences was slow even at 190 °C. The L ‐lactic acid and D ‐lactic acid isomers were added to the polymer chain in a small, blocky fashion. The MALDI‐TOF spectra of poly(L ‐lactic acid) (PLA) chains doped with Na+ and K+ cations showed that the PLA chains had the expected end groups. The MALDI‐TOF analysis also enabled the simultaneous detection of the cyclic oligomers of PLA present in these samples, and this led to the full structural characterization of the molecular species in PLA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2164–2177, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号