首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip. Higher harmonics of the microcantilever are measured in frequency ranges corresponding to attractive regime and the repulsive regime where the CNT buckles dynamically. Surface scanning is performed using a MWCNT tip on a SiO(2) grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT tip are discussed using the experimental results.  相似文献   

2.
Leonenko Z  Finot E  Amrein M 《Ultramicroscopy》2007,107(10-11):948-953
The toxicity of inhaled nanoparticles entering the body through the lung is thought to be initially defined by the electrostatic and adhesive interaction of the particles with lung's wall. Here, we investigated the first step of the interaction of nanoparticles with lung epithelial cells using atomic force microscope (AFM) as a force apparatus. Nanoparticles were modeled by the apex of the AFM tip and the forces of interaction between the tip and the cell analyzed over time. The adhesive force and work of adhesion strongly increased for the first 100s of contact and then leveled out. During this time, the tip was penetrating deeply into the cell. It first crossed a stiff region of the cell and then entered a much more compliant cell region. The work of adhesion and its progression over time were not dependent on the load with which the tip was brought into contact with the cell. We conclude that the initial thermodynamic aspects and the time course of the uptake of nanoparticles by lung epithelial cells can be studied using our experimental approach. It is discussed how the potential health threat posed by nanoparticles of different size and surface characteristics can be evaluated using the method presented.  相似文献   

3.
Falvo  M.R.  Steele  J.  Taylor  R.M.  Superfine  R. 《Tribology Letters》2000,9(1-2):73-76
We report on experiments in which multiwall carbon nanotubes (CNTs) are manipulated with AFM on a graphite (HOPG) substrate. We find certain discrete orientations in which the lateral force of manipulation dramatically increases as we rotate the CNT in the plane of the HOPG surface with the AFM tip. The three-fold symmetry of these discrete orientations indicates commensurate contact of the hexagonal graphene surfaces of the HOPG and CNT. As the CNT moves into commensurate contact, we observe the motion change from sliding/rotating in-plane to stick–roll motion.  相似文献   

4.
5.
于吉鲲  孙旭  吴鸣宇 《轴承》2022,(2):39-43
针对滚动轴承空心滚子内孔去氧化皮的难题,采用粒度为46,220目的碳化硅黏弹性流体磨料,对挤压轧机轴承的空心滚子进行去除内孔氧化皮试验,结果表明:利用磨料流加工方法可以有效去除空心滚子内孔的氧化皮;在相同的磨料流加工参数下,采用不同粒度的碳化硅磨粒可获得不同的加工表面,加工表面应与所用的碳化硅磨粒相匹配,氧化皮较厚的加...  相似文献   

6.
A new method, called augmented blanket with rotating grid (ABRG), has been proposed in our recent work on characterizing roughness and directionality of self-structured surface textures. This is the first method that calculates fractal dimensions (FDs) at individual scales and directions for the entire surface image data and does not require the data to be Brownian fractal. However, before the ABRG method can be used in real applications, effects of atomic force microscope (AFM) imaging conditions on FDs need to be evaluated first. In this paper, computer-generated AFM images with three different resolutions, 48 combinations of tip radii and cone angles, and 15 noise levels were used in the tests. The images represent isotropic self-structured surface textures with small, medium and large motif sizes, and anisotropic surfaces exhibiting two dominating directions. For isotropic surfaces, the ABRG method is not significantly affected (i.e. FDs changes <5 %) by image resolution, tip size (for surfaces with large motifs) and noise (except the level above 8 %). For anisotropic surfaces, the method exhibits large changes in FDs (up to ?34 %). The results obtained show that the ABRG method can be effective in analysing the AFM images of self-structured surface textures. However, some precautions should be taken with anisotropic and isotropic surfaces with small motifs.  相似文献   

7.
The carbon nano-tube (CNT) has ideal properties for atomic force microscope (AFM) tips. We assembled a CNT using 2 three-axial manipulators in a scanning electron microscope (SEM) chamber. In this process, the length and angle of the CNT were adjusted by observing the SEM image, after which the CNT was glued by amorphouscarbon. The results of performance are as follows. The lifetime of the CNT tip proved to be 5 times better than that of the silicon tip when continuously measuring the micro-roughness of a Czochralski (Cz) P-type (100) silicon wafer. The CNT tip is able to trace a narrow space (width less than 1 microm) better than the conventional silicon tip because of its high aspect ratio. The relationship between the observed image and CNT geometry is discussed herein.  相似文献   

8.
This article presents the results of nanoscale friction and adhesion of nanoparticle-textured surfaces (NPTS) using atomic force microscope (AFM). The effects of coverage ratio, texture height, and packing density on the adhesion and friction of the NPTS were investigated. The nano-textured surfaces were produced by self-assembling Au nanoparticles (NPs) with diameters of 20 nm and 50 nm on the silicon (100) surfaces, respectively. Surface morphology of the NPTS was characterized by field emission scanning electron microscopy and AFM. The results show that the NPTS significantly reduced the adhesive force compared to the smooth surface. The adhesion of NPTS is mainly dependent on the coverage ratio of NPs rather than the texture height and higher coverage ratio resulted in smaller adhesive force. The reduced adhesion of textured surfaces was attributed to the reduced real area of contact. The friction of NPTS is mainly dependent on the spacing between asperities. The lowered frictional force was obtained when the spacing between asperities is less than the size of AFM tip, because of the effectively reduced real area of contact between the AFM tip and the NPTS surface.  相似文献   

9.
We have established a fabrication process for conductive carbon nanotube (CNT) tips for multiprobe scanning tunneling microscope (STM) with high yield. This was achieved, first, by attaching a CNT at the apex of a supporting W tip by a dielectrophoresis method, second, by reinforcing the adhesion between the CNT and the W tip by electron beam deposition of hydrocarbon and subsequent heating, and finally by wholly coating it with a thin metal layer by pulsed laser deposition. More than 90% of the CNT tips survived after long-distance transportation in air, indicating the practical durability of the CNT tips. The shape of the CNT tip did not change even after making contact with another metal tip more than 100 times repeatedly, which evidenced its mechanical robustness. We exploited the CNT tips for the electronic transport measurement by a four-terminal method in a multiprobe STM, in which the PtIr-coated CNT portion of the tip exhibited diffusive transport with a low resistivity of 1.8 kOmega/microm. The contact resistance at the junction between the CNT and the supporting W tip was estimated to be less than 0.7 kOmega. We confirmed that the PtIr thin layer remained at the CNT-W junction portion after excess current passed through, although the PtIr layer was peeled off on the CNT to aggregate into particles, which was likely due to electromigration or a thermally activated diffusion process. These results indicate that the CNT tips fabricated by our recipe possess high reliability and reproducibility sufficient for multiprobe STM measurements.  相似文献   

10.
Multi-walled carbon nanotube (CNT) tips were used in atomic force microscope (AFM) anodization lithography to investigate their advantages over conventional tips. The CNT tip required a larger threshold voltage than the mother silicon tip due to the Schottky barrier at the CNT-Si interface. Current-to-voltage curves distinguished the junction property between CNTs and mother tips. The CNT-platinum tip, which is more conductive than the CNT-silicon tip, showed promising results for AFM anodization lithography. Finally, the nanostructures with high aspect ratio were fabricated using a pulsed bias voltage technique as well as the CNT tip.  相似文献   

11.
Gibson CT  Carnally S  Roberts CJ 《Ultramicroscopy》2007,107(10-11):1118-1122
In atomic force microscopy (AFM) the accuracy of data is often limited by the tip geometry and the effect on this geometry of wear. One way to improve the tip geometry is to attach carbon nanotubes (CNT) to AFM tips. CNTs are ideal because they have a small diameter (typically between 1 and 20nm), high aspect ratio, high strength, good conductivity, and almost no wear. A number of methods for CNT attachment have been proposed and explored including chemical vapour deposition (CVD), dielectrophoresis, arc discharge and mechanical attachment. In this work we will use CVD to deposit nanotubes onto a silicon surface and then investigate improved methods to pick-up and attach CNTs to tapping mode probes. Conventional pick-up methods involve using standard tapping mode or non-contact mode so as to attach only those CNTs that are aligned vertically on the surface. We have developed improved methods to attach CNTs using contact mode and reduced set-point tapping mode imaging. Using these techniques the AFM tip is in contact with a greater number of CNTs and the rate and stability of CNT pick-up is improved. The presence of CNTs on the modified AFM tips was confirmed by high-resolution AFM imaging, analysis of the tips dynamic force curves and scanning electron microscopy (SEM).  相似文献   

12.
A new reliable method for determining the lattice spacings of metallic and bimetallic nanoparticles in phase contrast high resolution electron microscopy (HREM) images was developed. In this study, we discuss problems in applying HREM techniques to single metal (Pt and Au) and bimetallic (AuPd) nanoparticles of unknown shapes and random orientations. Errors arising from particle tilt and edge effects are discussed and analysis criteria are presented to reduce these errors in measuring the lattice parameters of nanoparticles. The accuracy of an individual particle lattice measurement is limited by an effective standard deviation which depends on the size of the individual nanoparticle. For example, the standard deviation for 20-30 A Pt or Au nanoparticles is about 1.5%. To increase the accuracy in determining the lattice spacings of nanoparticles, statistical methods have to be used to obtain the average lattice spacing of an ensemble of nanoparticles. We measured approximately 100 nanoparticles with sizes in the range of 20-30 A and found that the mean lattice spacing can be determined to within 0.2%. By applying Vegard's law to the AuPd bimetallic systems we successfully detected the presence of alloying. For 30 A nanoparticles, the estimated ultimate error in determining the composition of the AuPd alloy is about 3% provided that at least 100 particles are measured. Finally, the challenges in determining the presence of more than one alloy phases in bimetallic nanoparticle systems were also discussed.  相似文献   

13.
Batteas  James D.  Quan  Xuhui  Weldon  Marcus K. 《Tribology Letters》1999,7(2-3):121-128
The adhesion and wear of colloidal silica nanoparticles (50 nm diameter) dispersed in a film have been directly studied using atomic force microscopy (AFM) under aqueous solution conditions. The adhesion between surface‐bound silica particles and the AFM tip is found to peak in strength between pH 4 and 5. Using the JKR contact mechanics model, the energy for a single Si–OH/Si–OH interaction was estimated to be 0.4 ± 0.1 kcal/mol. Tribochemical wear of the silica particles, and their displacement from the film, is enhanced at high pH due to the increased facility of silica dissolution and the concomitant increase in attendant inter‐particle repulsion. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

14.
The authors fabricated a probe tip with various sizes and examined the size dependency of the probe tip on the distribution of retraction forces between actin and anti-actin. Probe tips of various sizes were fabricated by two-photon polymerization methods on a micro cantilever of an atomic force microscope (AFM). The authors succeeded in fabricating a spherical tip having a smooth surface and the tip size varied between φ 0.8 and 5.5 μm. Anti-actin was immobilized on the fabricated probe tips and force curves were measured against an actin-immobilized mica substrate by AFM to analyze the retraction forces. The histograms of retraction forces showed that the single-molecular retraction force between actin and anti-actin was ca. 350–400 pN. It was observed that the average retraction forces for each tip size correlated with the square of the tip radius.  相似文献   

15.
The micro and nanostructures of Martian soil simulants with particles in the micrometre‐size range have been studied using a combination of optical and atomic force microscopy (AFM) in preparation for the 2007 NASA Phoenix Mars Lander mission. The operation of an atomic force microscope on samples of micrometre‐sized soil particles is a poorly investigated area where the unwanted interaction between the scanning tip and loose particles results in poor image quality and tip contamination by the sample. In order to mitigate these effects, etched silicon substrates with a variety of features have been used to facilitate the sorting and gripping of particles. From these experiments, a number of patterns were identified that were particularly good at isolating and immobilizing particles for AFM imaging. This data was used to guide the design of micromachined substrates for the Phoenix AFM. Both individual particles as well as aggregates were successfully imaged, and information on sizes, shapes and surface morphologies were obtained. This study highlights both the strengths and weaknesses of AFM for the potential in situ investigation of Martian soil and dust. Also presented are more general findings of the limiting operational constraints that exist when attempting the AFM of high aspect ratio particles with current technology. The performance of the final designs of the substrates incorporated on Phoenix will be described in a later paper.  相似文献   

16.
A modified tapping mode of the atomic force microscope (AFM) was introduced for manipulation, dissection, and lithography. By sufficiently decreasing the amplitude of AFM tip in the normal tapping mode and adjusting the setpoint, the tip-sample interaction can be efficiently controlled. This modified tapping mode has some characteristics of the AFM contact mode and can be used to manipulate nanoparticles, dissect biomolecules, and make lithographs on various surfaces. This method did not need any additional equipment and it can be applied to any AFM system.  相似文献   

17.
Haochih Liu B  Chen CH 《Ultramicroscopy》2011,111(8):1124-1130
The in-use wear of atomic force microscopy (AFM) probe tips is crucial for the reliability of AFM measurements. Increase of tip size for several nanometers is difficult to monitor but it can already taint subsequent AFM data. We have developed a method to study the shape evolution of AFM probe tips in nanometer scale. This approach provides direct comparison of probe shape profiles, and thus can help in evaluation of the level of tip damage and quality of acquired AFM data. Consequently, the shape degradation of probes modified by hydrophobic alkylsilane self-assembled monolayers (SAMs) was studied. The tip wear length and wear volume were adopted to quantitatively verify the effectiveness of hydrophobic coatings. When compared with their silicon counterparts, probes modified by SAM materials exhibit superior wear-resistant behavior in tapping mode scans.  相似文献   

18.
Mesquida P  Stemmer A 《Scanning》2002,24(3):117-120
We report the guided self-assembly of nanoparticles to geometrically well-defined charge patterns written on a dielectric surface with the conductive tip of an atomic force microscope (AFM). Charges are deposited in 30-90-nm thick fluorocarbon layers by applying voltage pulses to the conductive AFM tip. The samples are being developed by dipping them into an organic suspension of silica nanoparticles. Coulomb forces draw the nanoparticles to the charge patterns. With this simple process, we achieve a resolution of about 800 nm.  相似文献   

19.
The design and performance of an experimental setup utilizing a magnetron sputtering source for production of beams of ionized size-selected clusters for deposition in ultra-high vacuum is described. For the case of copper cluster formation the influence of different source parameters is studied and analyzed. Size-selected clusters are deposited on substrates and the efficiency of an electrostatic quadrupole mass selector is tested. Height analysis using atomic force microscopy (AFM) demonstrates relative standard size deviations of 7%-10% for the particles of various sizes between 6 nm and 19 nm. Combined analysis by AFM and transmission electron microscopy reveals that the clusters preserve almost spherical shape after the deposition on amorphous carbon substrates. Supported nanoparticles of a few nanometres in diameter have crystalline structure with a face-centered cubic (fcc) lattice.  相似文献   

20.
We develop a novel optical microcantilever for scanning near-field optical microscopy controlled by atomic force mode (SNOM/AFM). The optical microcantilever has the bent channel waveguide, the corner of which acts as aperture with a large tip angle. The resonance frequency of the optical microcantilever is 9 kHz, and the spring constant is estimated to be 0.59 N/m. The optical microcantilever can be operated in contact mode of SNOM/AFM and we obtain the optical resolution of about 200 nm, which is as same size as the diameter of aperture. We confirm that the throughput of optical microcantilever with an aperture of 170 nm diameter would be improved to be more than 10(-5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号