首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid has been investigated experimentally. Magnetic Fe3O4 nanoparticles were synthesized by chemical co-precipitation method and the nanofluids were prepared by dispersing nanoparticles into different base fluids like 20:80%, 40:60% and 60:40% by weight of the ethylene glycol and water mixture. Experiments were conducted in the temperature range from 20 °C to 60 °C and in the volume concentration range from 0.2% to 2.0%. Results indicate that the thermal conductivity increases with the increase of particle concentration and temperature. The thermal conductivity is enhanced by 46% at 2.0 vol.% of nanoparticles dispersed in 20:80% ethylene glycol and water mixture compared to other base fluids. The theoretical Hamilton–Crosser model failed to predict the thermal conductivity of the nanofluid with the effect of temperature. A new correlation is developed for the estimation of thermal conductivity of nanofluids based on the experimental data.  相似文献   

2.
The momentum and forced convection heat transfer for a laminar and steady free stream flow of nanofluids past an isolated square cylinder have been studied numerically. Different nanofluids consisting of Al2O3 and CuO with base fluids of water and a 60:40 (by mass) ethylene glycol and water mixture were selected to evaluate their superiority over conventional fluids. Recent correlations for the thermal conductivity and viscosity of nanofluids, which are functions of particle volumetric concentration as well as temperature, have been employed in this paper. The simulations have been conducted for Pe = 25, 50, 100 and 200, with nanoparticle diameters of 30 and 100 nm and particle volumetric concentrations ranging from 0% to 4%. The results of heat transfer characteristics of nanofluid flow over a square cylinder showed marked improvement comparing with the base fluids. This improvement is more evident in flows with higher Peclet numbers and higher particle volume concentration, while the particle diameter imposes an adverse effect on the heat transfer characteristics. In addition, it was shown that for any given particle diameter there is an optimum value of particle concentration that results in the highest heat transfer coefficient.  相似文献   

3.
The in-situ growth and chemical co-precipitation method was used for the synthesis of uniform dispersion of Co3O4 nanoparticles on the graphene oxide (GO) nanosheet. The reductions of aqueous cobalt chloride in the presence of GO with sodium borohydrate result in the formation of hybrid GO/Co3O4 nanoparticles. The synthesized GO/Co3O4 nanoparticles were characterized using X-ray power diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The hybrid nanofluids were prepared by dispersing synthesized GO/Co3O4 nanoparticles in water, ethylene glycol, and ethylene glycol/water mixtures. The properties such as thermal conductivity and viscosity were estimated experimentally at different volume concentrations and temperatures. The thermal conductivity enhancement of water-based nanofluid is 19.14% and ethylene glycol-based nanofluid is 11.85% at 0.2% volume concentration and at a temperature of 60 °C respectively compared to their respective base fluids. Similarly, the viscosity enhancement of water-based nanofluid is 1.70-times and ethylene glycol-based nanofluid is 1.42-times at 0.2% volume concentration and at a temperature of 60 °C respectively. The obtained thermal conductivity and viscosity data is compared with the literature values.  相似文献   

4.
Hot-press forming process is widely used to produce lightweight chassis in automotive industries. The hot-press forming process currently uses water as coolant to quench boron steels in a closed die with a cooling channel. However, to enhance performance of hot-press forming die, the fluid with better thermal properties will be used instead of normal water. This study dispersed Al2O3 nanoparticles with an average diameter of 13 nm in three volume percentages base ratios of water (W) to ethylene glycol (EG) (i.e. 60:40, 50:50, and 40:60) by two-step preparation. The two main parameters in cooling rate performance are thermal conductivity and viscosity. The nanocoolant of Al2O3/water–ethylene glycol mixture is prepared for the volume concentration range of 0.2 to 1.0%. The thermal conductivity and viscosity are then measured at temperature range of 15 to 55 °C. The highest enhancement of thermal conductivity was observed to be 10% higher than base fluid for 1.0% volume concentration at 55 °C in 60:40 (W/EG). However, the highest enhancement of viscosity was measured to be 39% for 1.0% volume concentration in 40:60 (W/EG) at 25 °C. The convective heat transfer coefficient of 1.0% concentration in 60:40 (W:EG) at 25 °C is enhanced by 25.4% better than that of 50:50 and 40:60 (W:EG) base fluid. Therefore, this study recommends the use of Al2O3 in 60:40 (W:EG) mixture with volume concentration of less than 1.0% for application in cooling channel of hot-press forming die. Nanocoolant as cooling agent with higher heat transfer coefficient compared to the base fluid can reduce the cycle time and increase the productivity of hot-press forming process.  相似文献   

5.
Nanofluid is a new type of heat transfer fluid with superior thermal performance characteristics, which is very promising for thermal engineering applications. This paper presents new findings on the thermal conductivity, viscosity, density, and specific heat of Al2O3 nanoparticles dispersed into water and ethylene glycol based coolant used in car radiator. The nanofluids were prepared by the two-step method by using an ultrasonic homogenizer with no surfactants. Thermal conductivity, viscosity, density, and specific heat have been measured at different volume concentrations (i.e. 0 to 1 vol.%) of nanoparticles and various temperature ranges (i.e. from 10 °C to 50 °C). It was found that thermal conductivity, viscosity, and density of the nanofluid increased with the increase of volume concentrations. However, specific heat of nanofluid was found to be decreased with the increase of nanoparticle volume concentrations. Moreover, by increasing the temperature, thermal conductivity and specific heat were observed to be intensified, while the viscosity and density were decreased.  相似文献   

6.
Experimental investigations have been carried out for obtaining the thermophysical properties of 60:40 (by mass) ethylene glycol/water mixture and water based alumina nanofluids. The effect of density and viscosity on the pumping power for flat plate solar collector has been investigated as well. Nanofluids of 0.05–0.1%v/v concentrations were prepared and characterized. Water based alumina nanofluids were found more preferable against sedimentation and aggregation than ethylene glycol/water mixture based nanofluids. The measured thermal conductivities of both types of the nanofluids increased almost linearly with concentration and are consistent in their overall trend with previous works done at lower concentrations by different researchers. In contrast to thermal conductivity, viscosity measurements showed that the viscosity of the Al2O3–water nanofluids exponentially decreases with increasing temperature. Furthermore, the measured viscosities of the Al2O3–water nanofluids showed a non-linear relation with concentration even in the low volume concentration except 0.05%v/v at below 40 °C. On the other hand, Al2O3–EG/water mixture exhibited Newtonian behavior. Existence of a critical temperature was observed beyond which the particle suspension properties altered drastically, which in turn triggered a hysteresis phenomenon. The hysteresis phenomenon on viscosity measurement, which is believed to be the first observed for EG/water-based nanofluids, has raised serious concerns regarding the use of nanofluids for heat transfer enhancement purposes. Results suggest that nanofluids can be used as a working medium with a negligible effect of enhanced viscosity and/or density. Results also show that the pressure drop and pumping power of the nanofluid flows are very close to that of the base liquid for low volume concentration.  相似文献   

7.
The engine coolant (water/ethylene glycol mixture type) becomes one of the most commonly used commercial fluids in cooling system of automobiles. However, the heat transfer coefficient of this kind of engine coolant is limited. The rapid developments of nanotechnology have led to emerging of a relatively new class of fluids called nanofluids, which could offer the enhanced thermal conductivity (TC) compared with the conventional coolants. The present study reports the new findings on the thermal conductivity and viscosity of car engine coolants based silicon carbide (SiC) nanofluids. The homogeneous and stable nanofluids with volume fraction up to 0.5 vol.% were prepared by the two-step method with the addition of surfactant (oleic acid). It was found that the thermal conductivity of nanofluids increased with the volume fraction and temperature (10–50 °C), and the highest thermal conductivity enhancement was found to be 53.81% for 0.5 vol.% nanofluid at 50 °C. In addition, the overall effectiveness of the current nanofluids (0.2 vol.%) was found to be ~ 1.6, which indicated that the car engine coolant-based SiC nanofluid prepared in this paper was better compared to the car engine coolant used as base liquid in this study.  相似文献   

8.
Thermal conductivity and viscosity analysis of Al2O 3/CuO (50/50) hybrid nanofluid in various mass fractions of ethylene glycol (EG) and propylene glycol (PG) binary base fluid have been investigated in the present work. Hybrid nanofluid with vol. fraction range limited to 1.5% and within the higher temperature range of 50°C to 70°C is considered for thermal conductivity and viscosity analysis. Impact on viscosity and conductivity models with various shape nanoparticles, i.e, spherical, cylindrical, brick, platelets, and blades have been discussed and were compared in EG and PG binary base fluids. Also, the analysis extends to the prediction for the stability with zeta potential and synthesis of spherical shape Al2O3/CuO hybrid nanofluid with X‐ray diffraction (XRD) and scanning electron microscope (SEM). The theoretical analysis revealed that thermal conductivity of Al2O3/CuO hybrid nanofluid in EG binary base fluid is lower compared to in PG binary base fluid. The thermal conductivity is observed to be higher in spherical and cylindrical shape nanoparticle compared to bricks, blades, and platelets shape nanoparticles. Optimum viscosity of Al2O3/CuO hybrid nanofluid is observed at 50%EG and 30%PG of the binary base fluid. Hybrid nanofluid in 30% of PG as binary base fluid results 16.2% higher dynamic viscosity compared to pure PG base fluid for a volume concentration of 2%. Zeta potential measurement results in the stability of spherical Al2O3‐CuO/ (50/50) EG/W hybrid nanofluid, and it may be considered as a heat transfer fluid.  相似文献   

9.
In the present investigation nanofluids containing CuO and Al2O3 oxide nanoparticles in water as base fluid in different concentrations produced and the laminar flow convective heat transfer through circular tube with constant wall temperature boundary condition were examined. The experimental results emphasize that the single phase correlation with nanofluids properties (Homogeneous Model) is not able to predict heat transfer coefficient enhancement of nanofluids. The comparison between experimental results obtained for CuO / water and Al2O3 / water nanofluids indicates that heat transfer coefficient ratios for nanofluid to homogeneous model in low concentration are close to each other but by increasing the volume fraction, higher heat transfer enhancement for Al2O3 / water can be observed.  相似文献   

10.
A set of three nanofluids of different blends were prepared with ethylene glycol–water and TiO2 nanoparticles and are characterized for thermal conductivity as a function of temperature and volume concentration of nanoparticles. The measurements were taken in the temperature range from 30 °C to 70 °C, which happens to be most widely used range of temperature for many cooling applications in heat transfer equipment. Nanofluids were prepared by dispersing the nanoparticles in base fluids such as (1) water, (2) ethylene glycol plus water in the ratio of 40%:60% and 3) ethylene glycol plus water in the ratio of 50%:50% by weight. Based on the experimental results, it is observed that the thermal conductivity of TiO2 nanofluids, considered in the present investigation, increases with increase in percentage of volume concentration of TiO2 and also with temperature. Current experimental investigation presents valuable data on the measured thermal conductivity of TiO2 nanofluids for very low volume concentrations from 0.2% to 1.0% of nanoparticles in the temperature range of 30 °C–70 °C.  相似文献   

11.
Experiments were conducted to investigate the effect of nanofluids on reflood heat transfer in a hot vertical tube. The nanofluids, which are produced by dispersing nano-sized particles in traditional base fluids such as water, ethylene glycol, and engine oil, are expected to have a reasonable potential to enhance a heat transfer. 0.1 volume fraction (%) Al2O3/water nanofluid was prepared by two-step method and 0.1 volume fraction (%) carbon nano colloid (CNC) was prepared by the process self-dispersing by carboxyl formed particle surface. Transmission electron microscopy (TEM) images are acquired to characterize the shape and size of Al2O3 and graphite nanoparticles. The dispersion behavior of nanofluids was investigated with zeta potential values. And then, the reflood tests have been performed using water and nanofluids. We have observed a more enhanced cooling performance in the case of the nanofluid reflood. Consequently, the cooling performance is enhanced more than 13 s and 20 s for Al2O3/water nanofluid and CNC.  相似文献   

12.
In order to investigate the effect of nanoparticle volume fraction, nanoparticle size and temperature on the thermal conductivity of glycerol based alumina (α-Al2O3) nanofluids, a set of experiments were carried out for temperature ranging from 20 °C to 45 °C. The nanofluids contained α-Al2O3 nanoparticles of three different sizes (31 nm, 55 nm and 134 nm) were prepared by two-step method at volume fractions ranging from 0.5% to 4%. The experimental results show that α-Al2O3-glycerol nanofluids have substantially higher thermal conductivity than the base fluid and the maximum enhancement of the relative thermal conductivity was 19.5% for the case of 31 nm at 4% volume fraction. The data analyses indicated that the volume fraction and size of the nanoparticles have significant effects on the thermal conductivity ratio (TCR) of Al2O3-glycerol nanofluids, while the temperature has almost no significant effect on the data for range of this study. At room temperature, the effective thermal conductivity remains almost constant for 50 h at 4% volume fractions. The comparison of the obtained experimental data and predictions from some existing theoretical and empirical models reveals that the thermal conductivity ratio and its trend could not be accurately explained by the models in open literature. Consequently, a new empirical correlation based on the experimental data has been developed in this study.  相似文献   

13.
Experimental investigations and theoretical determination of effective thermal conductivity and viscosity of magnetic Fe3O4/water nanofluid are reported in this paper. The nanofluid was prepared by synthesizing Fe3O4 nanoparticles using the chemical precipitation method, and then dispersed in distilled water using a sonicator. Both experiments were conducted in the volume concentration range 0.0% to 2.0% and the temperature range 20 °C to 60 °C. The thermal conductivity and viscosity of the nanofluid were increased with an increase in the particle volume concentration. Viscosity enhancement was greater compared to thermal conductivity enhancement under at same volume concentration and temperature. Theoretical equations were developed to predict thermal conductivity and viscosity of nanofluids without resorting to the well established Maxwell and Einstein models, respectively. The proposed equations show reasonably good agreement with the experimental results.  相似文献   

14.
Nanofluids are a new class of engineered heat transfer fluids which exhibit superior thermophysical properties and have potential applications in numerous important fields. In this study, nanofluids have been prepared by dispersing SiO2 nanoparticles in different base fluids such as 20:80% and 30:70% by volume of BioGlycol (BG)/water (W) mixtures. Thermal conductivity and viscosity experiments have been conducted in temperatures between 30 °C and 80 °C and in volume concentrations between 0.5% and 2.0%. Results show that thermal conductivity of nanofluids increases with increase of volume concentrations and temperatures. Similarly, viscosity of nanofluid increases with increase of volume concentrations but decreases with increase of temperatures. The maximum thermal conductivity enhancement among all the nanofluids was observed for 20:80% BG/W nanofluid about 7.2% in the volume concentration of 2.0% at a temperature of 70 °C. Correspondingly among all the nanofluids maximum viscosity enhancement was observed for 30:70% BG/W nanofluid about 1.38-times in the volume concentration of 2.0% at a temperature of 70 °C. The classical models and semi-empirical correlations failed to predict the thermal conductivity and viscosity of nanofluids with effect of volume concentration and temperatures. Therefore, nonlinear correlations have been proposed with 3% maximum deviation for the estimation of thermal conductivity and viscosity of nanofluids.  相似文献   

15.
This study examines the effect of particle size, temperature, and weight fraction on the thermal conductivity ratio of alumina(Al2O3)/water nanofluids. A Al2O3/water nanofluid produced by the direct synthesis method served as the experimental sample, and nanoparticles, each of a different nominal diameter (20, 50, and 100 nm), were dispersed into four different concentrations (0.5, 1.0, 1.5, and 2.0 wt%). This experiment measured the thermal conductivity of nanofluids with different particle sizes, weight fractions, and working temperatures (10, 30, 50 °C). The results showed a correlation between high thermal conductivity ratios and enhanced sensitivity, and small nanoparticle size and higher temperature. This research utilized experimental data to construct a new empirical equation, taking the nanoparticle size, temperature, and lower weight fraction of the nanofluid into consideration. Comparing the regression results with the experimental values, the margin of error was within ?3.5% to +2.7%. The proposed empirical equation showed reasonably good agreement with our experimental results.  相似文献   

16.
Nanofluids are advanced fluids with novel properties useful for diverse applications in heat transfer. This article reports the experimental determination of thermal conductivity and viscosity for silica (SiO2) nanofluids in ethylene glycol (EG) and glycerol (G) as base fluids. A two-step method was applied to disperse the nanoparticles in the base fluids for the particle volume concentration of 0.5–2.0%. The dispersion stability of the nanofluids was evaluated by zeta potential analysis. All the measurements were performed in the temperature interval from 30 °C to 80 °C. It was found that the thermal conductivity increases with temperature. The SiO2-EG showed higher conductivity enhancement than SiO2-G nanofluids. Rheological analyses confirm Newtonian behavior for silica nanofluids within shear rate range of 20–100 s 1. Viscosity decreases with an increase in operating temperature. The SiO2-EG demonstrated very weak temperature dependence compared to the SiO2-G nanofluids. Based on these measured properties, the criterion for heat transfer performance was determined. Furthermore, equations have been proposed with accuracy within ± 10% deviations to predict the thermal conductivity and dynamic viscosity of EG and G-based SiO2 nanofluids.  相似文献   

17.
This study aims to evaluate the thermal performance and friction factor characteristics of the U-shaped serpentine microchannel heat sink using three different nanofluids. Two distinct nanoparticles, namely Al2O3 (alumina) and CuO (copper oxide), were used for the preparation of nanofluids using water and ethylene glycol (EG) as base fluids. Three nanofluids, namely nanofluid I (Al2O3 + water), nanofluid II (CuO + water), and nanofluid III (CuO + EG), have been prepared. The results showed that the thermal conductivity of nanofluids was increased for all concentrations (from 0.01 to 0.3%), compared with base fluids. The theoretical values derived from the relationship between the Darcy friction factor showed a clear understanding of the fully developed laminar flow. Thermal resistance for nanofluid III was lower than other nanofluids, resulting in a higher cooling efficiency. The nanofluid mechanism and the geometry of the U-shaped serpentine heat sink have led to the improvement in the thermal performance of electronic cooling systems.  相似文献   

18.
In this paper, different types of entropy generations in the circular shaped microchannel and minichannel are discussed analytically using different types of nanoparticles and base fluids. In this analysis, Copper (Cu), alumina (Al2O3) as the nanoparticle and H2O, ethylene glycol (EG) as the base fluids were used. The volume fractions of the nanoparticles were varied from 2% to 6%. In this paper, the irreversibility or entropy generation analysis as the function of entropy generation ratio, thermal entropy generation rate and fluid friction entropy generation rate for these types of nanofluids in turbulent flow condition have been analyzed using available correlations. Cu–H2O nanofluid showed the highest decreasing entropy generation rate ratio (36%) compared to these nanofluids flow through the microchannel at 6 vol.%. The higher thermal conductivity of H2O causes to generate much lower thermal entropy generation rate compared to the EG base fluid. The fluid friction entropy generation rate decreases fruitfully by the increasing of volume fraction of the nanoparticles. Cu–H2O and Cu–EG nanofluid gave the maximum decreasing rates of the fluid friction entropy generation rate are 38% and 35% respectively at 6% volume fraction of the nanoparticles. Smaller diameter showed less entropy generation in case of all nanofluids.  相似文献   

19.
In this article, laminar mixed convective heat transfer at different nanofluids flow in an elliptic annulus with constant heat flux boundary condition has been numerically investigated. The three dimensional governing equations (continuity, momentum and energy) are solved using the finite volume method (FVM). The investigation covers Reynolds number and nanoparticle volume fraction in the ranges of 200–1000 and 0–4% respectively. In the present work, four different types of nanofluids are examined in which Al2O3, CuO, SiO2 and ZnO are suspended in the base fluid of ethylene glycol (EG) with different nanoparticle sizes 20, 40, 60 and 80 nm. The results show that SiO2-EG nanofluid has the highest Nusselt number, followed by Al2O3-EG, ZnO-EG, CuO-EG, and lastly pure ethylene glycol. The Nusselt number increased as the nanoparticle volume fraction and Reynolds number increased; however, it decreased as the nanoparticle diameter increased. It is found that the glycerine-SiO2 shows the best heat transfer enhancement compared with other tested base fluids. Comparisons of the present results with those available in the literature are presented and discussed.  相似文献   

20.
The effect of using louvered strip inserts placed in a circular double pipe heat exchanger on the thermal and flow fields utilizing various types of nanofluids is studied numerically. The continuity, momentum and energy equations are solved by means of a finite volume method (FVM). The top and the bottom walls of the pipe are heated with a uniform heat flux boundary condition. Two different louvered strip insert arrangements (forward and backward) are used in this study with a Reynolds number range of 10,000 to 50,000. The effects of various louvered strip slant angles and pitches are also investigated. Four different types of nanoparticles, Al2O3, CuO, SiO2, and ZnO with different volume fractions in the range of 1% to 4% and different nanoparticle diameters in the range of 20 nm to 50 nm, dispersed in a base fluid (water) are used. The numerical results indicate that the forward louvered strip arrangement can promote the heat transfer by approximately 367% to 411% at the highest slant angle of α = 30° and lowest pitch of S = 30 mm. The maximal skin friction coefficient of the enhanced tube is around 10 times than that of the smooth tube and the value of performance evaluation criterion (PEC) lies in the range of 1.28–1.56. It is found that SiO2 nanofluid has the highest Nusselt number value, followed by Al2O3, ZnO, and CuO while pure water has the lowest Nusselt number. The results show that the Nusselt number increases with decreasing the nanoparticle diameter and it increases slightly with increasing the volume fraction of nanoparticles. The results reveal that there is a slight change in the skin friction coefficient when nanoparticle diameters of SiO2 nanofluid are varied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号