共查询到20条相似文献,搜索用时 17 毫秒
1.
Rain‐on‐snow events have generated major floods around the world, particularly in coastal, mountainous regions. Most previous studies focused on a limited number of major rain‐on‐snow events or were based primarily on model results, largely due to a lack of long‐term records from lysimeters or other instrumentation for quantifying event water balances. In this analysis, we used records from five automated snow pillow sites in south coastal British Columbia, Canada, to reconstruct event water balances for 286 rain‐on‐snow events over a 10‐year period. For large rain‐on‐snow events (event rainfall >40 mm), snowmelt enhanced the production of water available for run‐off (WAR) by approximately 25% over rainfall alone. For smaller events, a range of antecedent and meteorological factors influenced WAR generation, particularly the antecedent liquid water content of the snowpack. Most large events were associated with atmospheric rivers. Rainfall dominated WAR generation during autumn and winter events, whereas snowmelt dominated during spring and summer events. In the majority of events, the sensible heat of rain contributed less than 10% of the total energy consumed by snowmelt. This analysis illustrated the importance of understanding the amount of rainfall occurring at high elevations during rain‐on‐snow events in mountainous regions. 相似文献
2.
Jessica D. Lundquist Susan Dickerson-Lange Ethan Gutmann Tobias Jonas Cassie Lumbrazo Dylan Reynolds 《水文研究》2021,35(7):e14274
When formulating a hydrologic model, scientists rely on parameterizations of multiple processes based on field data, but literature review suggests that more frequently people select parameterizations that were included in pre-existing models rather than re-evaluating the underlying field experiments. Problems arise when limited field data exist, when “trusted” approaches do not get reevaluated, and when sensitivities fundamentally change in different environments. The physics and dynamics of snow interception by conifers is just such a case, and it is critical to simulation of the water budget and surface albedo. The most commonly used interception parameterization is based on data from four trees from one site, but results from this field study are not directly transferable to locations with relatively warmer winters, where the dominant processes differ dramatically. Here, we combine a literature review with model experiments to demonstrate needed improvements. Our results show that the choice of model form and parameters can vary the fraction of snow lost through interception by as much as 30%. In most simulations, the warming of mean winter temperatures from −7 to 0°C reduces the modelled fraction of snow under the canopy compared to the open, but the magnitude of simulated decrease varies from about 10% to 40%. The range of results is even larger when considering models that neglect the melting of in-canopy snow in higher-humidity environments where canopy sublimation plays less of a role. Thus, we recommend that all models represent canopy snowmelt and include representation of increased loading due to increased adhesion and cohesion when temperatures rise from −3 to 0°C. In addition to model improvements, field experiments across climates and forest types are needed to investigate how to best model the combination of dynamically changing forest cover and snow cover to better understand and predict changes to albedo and water supplies. 相似文献
3.
Yoshinori Shinohara Tomo'omi Kumagai Kyoichi Otsuki Atsushi Kume Naoya Wada 《水文研究》2009,23(10):1418-1429
Hydrologic balance in high‐altitude, mid‐latitude mountain areas is important in terms of the water resources available to associated lowlands. This study examined how current and historical shifts in precipitation (P) patterns and concurrent increases in temperature (T) affected runoff (Q) and other hydrologic components in a mid‐latitude mountain catchment of central Japan, using a combination of long‐term data and a simplified hydrologic model, along with their stochastic treatment. The availability of intensive meteorological and hydrological data from the period 1997–2001 allowed the derivation of key relationships for the current climate that tie the forcing term to the parameters or state variables. By using the data recorded in the period 1965–2001, the force for driving the historical simulation was generated. Based on this model and historical shifts in P and T, the probability density functions of Q (pdf(Q)) was computed. A main novelty in this study is that such a stochastic representation, which is useful for considering the influence of projected shifts in environmental factors on the hydrologic budget, was provided. Despite the large increase in the rate of T in winter and spring, pdf(Q) in spring and summer varied appreciably during the time studied mainly because of an increase in snowmelt. An interannual change in whole‐year Q was robust to shifts in T because while Q in spring increased, in summer it decreased, implying a crucial effect of global warming on mountain hydrologic regimes is change in the timing of Q. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
4.
The Canadian Land Surface Scheme (CLASS) was modified to correct an underestimation of the winter albedo in evergreen needleleaf forests. Default values for the visible and near‐infrared albedo of a canopy with intercepted snow, αVIS,cs and αNIR,cs, respectively, were too small, and the fraction of the canopy covered with snow, fsnow, increased too slowly with interception, producing a damped albedo response. A new model for fsnow is based on zI*, the effective depth of newly intercepted snow required to increase the canopy albedo to its maximum, which corresponds in the model with fsnow = 1. Snow unloading rates were extracted from visual assessments of photographs and modelled based on relationships with meteorological variables, replacing the time‐based method employed in CLASS. These parameterizations were tested in CLASS version 3.6 at boreal black spruce and jack pine forests in Saskatchewan, Canada, a subalpine Norway spruce and silver fir forest at Alptal, Switzerland, and a boreal maritime forest at Hitsujigaoka, Japan. Model configurations were assessed based on the index of agreement, d, relating simulated and observed daily albedo. The new model employs αVIS,cs = 0.27, αNIR,cs = 0.38 and zI* = 3 cm. The best single‐variable snow unloading algorithm, determined by the average cross‐site d, was based on wind speed. Two model configurations employing ensemble averages of the unloading rate as a function of total incoming radiation and wind speed, and air temperature and wind speed, respectively, produced larger minimum cross‐site d values but a smaller average. The default configuration of CLASS 3.6 produced a cross‐site average d from October to April of 0.58. The best model employing a single parameter (wind speed at the canopy top) for modelling the unloading rate produced an average d of 0.86, while the two‐parameter ensemble‐average unloading models produced a minimum d of 0.81 and an average d of 0.84. © 2015 Her Majesty the Queen in Right of Canada. Hydrological Processes published by John Wiley & Sons, Ltd. 相似文献
5.
Predicting the rate of snowmelt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50°, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at the snow cover surface became positive when daily mean solar angles exceeded 22° in late March. Hence, canopy structure and solar angle control the net radiation at the snow cover surface during clear sky conditions and will govern the timing and rate of snowmelt. Models of intercepted snow sublimation and forest snowmelt could beneficially incorporate the canopy radiation balance, which can be extrapolated to stands of various canopy densities, coverage and heights in a physically based manner. Such models could hence avoid ‘empirical’ temperature index measures that cannot be extrapolated with confidence. 相似文献
6.
Urban winter hydrology has garnered very little attention owing to the general notion that high‐intensity rainfalls are the major flood‐generating events in urban areas. As a result, few efforts have been made to research urban snow and its melt characteristics. This study investigates the characteristics of urban snow that differentiate it from rural snow, and makes recommendations for incorporating these characteristics into an urban snowmelt model. A field study was conducted from the fall of 2001 to the spring of 2002 in the city of Calgary, Canada. Snow depths and densities, soil moisture, soil temperature, snow albedo, net radiation, snow evaporation, and surface temperature were measured at several locations throughout the winter period. The combination of urban snow removal practices and the physical elements that exist in urban areas were found to influence the energy balance of the snowpack profoundly. Shortwave radiation was found to be the main source of energy for urban snow; as a consequence, the albedo of urban snow is a very important factor in urban snowmelt modelling. General observations lead to the classification of snow as one of four types: snow piles, snow on road shoulders, snow on sidewalk edges, and snow in open areas. This resulted in the development of four separate functions for the changing snow albedo values. A study of the frozen ground conditions revealed that antecedent soil moisture conditions had very little impact on frozen ground, and thus frozen ground very nearly always acts as a near impervious area. Improved flood forecasting for urban catchments in cold regions can only be achieved with accurate modelling of urban winter runoff that involves the energy balance method, incorporating snow redistribution and urban snow‐cover characteristics, and using small time steps. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
7.
Precipitation intercepted by forests plays a major role in more than one‐fourth of the global land area's hydrologic cycle. Direct in situ measurement of intercepted precipitation is challenging, and thus, it is typically indirectly estimated through comparing precipitation under forest cover and in the open. We discuss/compare measurement methods for forest precipitation interception beyond classical budgeting and then recommend future directions for improving water storage estimation. Comparison of techniques shows that methods submerging tree components produce the largest water storage capacity values. Whole‐tree lysimeters have been used with great success at quantifying water storage for the integrated system yet are unable to separate trunk versus canopy storage. Remote sensing, particularly signal attenuation, may permit this separation. Mechanical displacement methods show great promise and variety of techniques: pulley/spring system, branch strain sensors, trunk compression sensors and photography. Relating wind sway to water storage also shows great promise with negligible environmental disruption yet is currently at the proof‐of‐concept stage. Suggested future directions focus on development of common features regarding all discussed methods: (i) measurement uncertainties or processes beyond interception influencing the observed signal, (ii) scaling approaches to move from single tree components to the single‐tree and forest scales and (iii) temporal scaling to estimate the relevance of single‐interception components over longer timescales. Through addressing these research needs, we hope the scientific community can develop an ‘integrated’ monitoring plan incorporating multiple measurement techniques to characterize forest‐scale water storage dynamics while simultaneously investigating underlying (smaller‐scale) components driving those dynamics across the spectrum of precipitation and forest conditions. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
8.
As large, high‐severity forest fires increase and snowpacks become more vulnerable to climate change across the western USA, it is important to understand post‐fire disturbance impacts on snow hydrology. Here, we examine, quantify, parameterize, model, and assess the post‐fire radiative forcing effects on snow to improve hydrologic modelling of snow‐dominated watersheds having experienced severe forest fires. Following a 2011 high‐severity forest fire in the Oregon Cascades, we measured snow albedo, monitored snow, and micrometeorological conditions, sampled snow surface debris, and modelled snowpack energy and mass balance in adjacent burned forest (BF) and unburned forest sites. For three winters following the fire, charred debris in the BF reduced snow albedo, accelerated snow albedo decay, and increased snowmelt rates thereby advancing the date of snow disappearance compared with the unburned forest. We demonstrate a new parameterization of post‐fire snow albedo as a function of days‐since‐snowfall and net snowpack energy balance using an empirically based exponential decay function. Incorporating our new post‐fire snow albedo decay parameterization in a spatially distributed energy and mass balance snow model, we show significantly improved predictions of snow cover duration and spatial variability of snow water equivalent across the BF, particularly during the late snowmelt period. Field measurements, snow model results, and remote sensing data demonstrate that charred forests increase the radiative forcing to snow and advance the timing of snow disappearance for several years following fire. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
A network of 30 standalone snow monitoring stations was used to investigate the snow cover distribution, snowmelt dynamics, and runoff generation during two rain‐on‐snow (ROS) events in a 40 km2 montane catchment in the Black Forest region of southwestern Germany. A multiple linear regression analysis using elevation, aspect, and land cover as predictors for the snow water equivalent (SWE) distribution within the catchment was applied on an hourly basis for two significant ROS flood events that occurred in December 2012. The available snowmelt water, liquid precipitation, as well as the total retention storage of the snow cover were considered in order to estimate the amount of water potentially available for the runoff generation. The study provides a spatially and temporally distributed picture of how the two observed ROS floods developed in the catchment. It became evident that the retention capacity of the snow cover is a crucial mechanism during ROS. It took several hours before water was released from the snowpack during the first ROS event, while retention storage was exceeded within 1 h from the start of the second event. Elevation was the most important terrain feature. South‐facing terrain contributed more water for runoff than north‐facing slopes, and only slightly more runoff was generated at open compared to forested areas. The results highlight the importance of snowmelt together with liquid precipitation for the generation of flood runoff during ROS and the large temporal and spatial variability of the relevant processes. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
J. Talbot A. P. Plamondon D. Lvesque D. Aub M. Prvos F. Chazalmartin M. Gnocchini 《水文研究》2006,20(5):1187-1199
Snow water equivalent was measured during three springs on north‐ and south‐exposed sites representing a range of stand structure and development stages of Quebec's balsam fir forest. Maximum snow water equivalent of the season, mean seasonal snowmelt rate, snowmelt season duration and total snowmelt season degree‐day factor were related to canopy height, canopy density, light interception fraction and basal area of the stands using random coefficient models. Seasonal mean snowmelt rate was better explained by stand characteristics (R2 from 0·41 to 0·61) than was maximum snow water equivalent (R2 from 0·08 to 0·23). The best relationship was found with light interception, which explained 61% of snowmelt rate variability between stands. These relationships were not significantly affected by stand aspect (Pr ≥ S = 0·14 or higher), as snow dynamics seemed less dependent on aspect than on stand characteristics. Snowmelt recovery rates could be used by forest planners to establish an acceptable time step for the harvesting of different parts of a watershed in order to prevent peak flow augmentations. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
11.
D. Penna M. Ahmad S. J. Birks L. Bouchaou M. Brenčič S. Butt L. Holko G. Jeelani D. E. Martínez G. Melikadze J. B. Shanley S. A. Sokratov T. Stadnyk A. Sugimoto P. Vreča 《水文研究》2014,28(22):5637-5644
We modified a passive capillary sampler (PCS) to collect snowmelt water for isotopic analysis. Past applications of PCSs have been to sample soil water, but the novel aspect of this study was the placement of the PCSs at the ground‐snowpack interface to collect snowmelt. We deployed arrays of PCSs at 11 sites in ten partner countries on five continents representing a range of climate and snow cover worldwide. The PCS reliably collected snowmelt at all sites and caused negligible evaporative fractionation effects in the samples. PCS is low‐cost, easy to install, and collects a representative integrated snowmelt sample throughout the melt season or at the melt event scale. Unlike snow cores, the PCS collects the water that would actually infiltrate the soil; thus, its isotopic composition is appropriate to use for tracing snowmelt water through the hydrologic cycle. The purpose of this Briefing is to show the potential advantages of PCSs and recommend guidelines for constructing and installing them based on our preliminary results from two snowmelt seasons. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
12.
A devastating flood struck Southern Alberta in late June 2013, with much of its streamflow generation in the Front Ranges of the Rocky Mountains, west of Calgary. To better understand streamflow generation processes and their sensitivity to initial conditions, a physically based hydrological model was developed using the Cold Regions Hydrological Modelling platform (CRHM) to simulate the flood for the Marmot Creek Research Basin (~9.4 km2). The modular model includes major cold and warm season hydrological processes including snow redistribution, sublimation, melt, runoff over frozen and unfrozen soils, evapotranspiration, subsurface runoff on hillslopes, groundwater recharge and discharge and streamflow routing. Uncalibrated simulations were conducted for eight hydrological years and generally matched streamflow observations well, with a NRMSD of 52%, small model bias (?3%) and a Nash–Sutcliffe efficiency (NSE) of 0.71. The model was then used to diagnose the responses of hydrological processes in 2013 flood from different ecozones in Marmot Creek: alpine, treeline, montane forest and large and small forest clearings to better understand spatial variations in the flood runoff generation mechanisms. To examine the sensitivity to antecedent conditions, ‘virtual’ flood simulations were conducted using a week (17 to 24 June 2013) of flood meteorology imposed on the meteorology of the same period in other years (2005 to 2012), or switched with the meteorology of one week in different months (May to July) of 2013. Sensitivity to changing precipitation and land cover was assessed by varying the precipitation amount during the flood and forest cover and soil storage capacity in forest ecozone. The results show that runoff efficiency increases rapidly with antecedent snowpack and soil moisture storage with the highest runoff response to rainfall from locations in the basin where there are recently melted or actively melting snowpacks and resulting high soil moisture or frozen soils. The impact of forest canopy on flooding is negligible, but flood peak doubles if forest canopy removal is accompanied by 50% reduction in water storage capacity in the basin. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
S. McKenzie Skiles Thomas H. Painter Jayne Belnap Lacey Holland Richard L. Reynolds Harland L. Goldstein John Lin 《水文研究》2015,29(26):5397-5413
Dust deposition onto mountain snow cover in the Upper Colorado River Basin frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau. Dust loading has increased since the intensive settlement in the western USA in the mid 1880s. The effects of dust‐on‐snow have been well studied at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, the first high‐altitude area of contact for predominantly southwesterly winds transporting dust from the southern Colorado Plateau. To capture variability in dust transport from the broader Colorado Plateau and dust deposition across a larger area of the Colorado River water sources, an additional study plot was established in 2009 on Grand Mesa, 150 km to the north of SBBSA in west central, CO. Here, we compare the 4‐year (2010–2013) dust source, deposition, and radiative forcing records at Grand Mesa Study Plot (GMSP) and Swamp Angel Study Plot (SASP), SBBSA's subalpine study plot. The study plots have similar site elevations/environments and differ mainly in the amount of dust deposited and ensuing impacts. At SASP, end of year dust concentrations ranged from 0.83 mg g?1 to 4.80 mg g?1, and daily mean spring dust radiative forcing ranged from 50–65 W m?2, advancing melt by 24–49 days. At GMSP, which received 1.0 mg g?1 less dust per season on average, spring radiative forcings of 32–50 W m?2 advanced melt by 15–30 days. Remote sensing imagery showed that observed dust events were frequently associated with dust emission from the southern Colorado Plateau. Dust from these sources generally passed south of GMSP, and back trajectory footprints modelled for observed dust events were commonly more westerly and northerly for GMSP relative to SASP. These factors suggest that although the southern Colorado Plateau contains important dust sources, dust contributions from other dust sources contribute to dust loading in this region, and likely account for the majority of dust loading at GMSP. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
14.
The spatio‐temporal distribution of snow in a catchment during ablation reflects changes in the total amount of snow water equivalent and is thus a key parameter for the estimation of melt water run‐off. This study explores possible rules behind the spatial variability of snow depth during the ablation season in a small Alpine catchment with complex topography. The snow depth observations are based on more than 160 000 terrestrial laser scanner data points with a spatial resolution of 1 m, which were obtained from 11 scanning campaigns of two consecutive ablation seasons. The analysis suggests that for estimating cumulative snow melt dynamics from the catchment investigated, assessing the initial snow distribution prior to the melt season is more important than addressing spatial differences in the melt behaviour. Snow volume and snow‐covered area could be predicted well using a conceptual melt model assuming spatially uniform melt rates. However, accurate results were only obtained if the model was initialized with a pre‐melt snow distribution that reflected measured mean and standard deviation. Using stratified melt rates on the other hand did not improve the model results. At least for sites with similar meteorological and topographical conditions, the model approach presented here comprises an efficient way to estimate snow depletion dynamics, especially if persistent snow accumulation pattern between years facilitate the characterization of the initial snow distribution prior to the melt. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
15.
Nataliia Kozii Hjalmar Laudon Mikaell Ottosson‐Löfvenius Niles J. Hasselquist 《水文研究》2017,31(20):3558-3567
Water losses from snow intercepted by forest canopy can significantly influence the hydrological cycle in seasonally snow‐covered regions, yet how snow interception losses (SIL) are influenced by a changing climate are poorly understood. In this study, we used a unique 30 year record (1986–2015) of snow accumulation and snow water equivalent measurements in a mature mixed coniferous (Picea abies and Pinus sylvestris ) forest stand and an adjacent open area to assess how changes in weather conditions influence SIL. Given little change in canopy cover during this study, the 20% increase in SIL was likely the result of changes in winter weather conditions. However, there was no significant change in average wintertime precipitation and temperature during the study period. Instead, mean monthly temperature values increased during the early winter months (i.e., November and December), whereas there was a significant decrease in precipitation in March. We also assessed how daily variation in meteorological variables influenced SIL and found that about 50% of the variation in SIL was correlated to the amount of precipitation that occurred when temperatures were lower than ?3 °C and to the proportion of days with mean daily temperatures higher than +0.4 °C. Taken together, this study highlights the importance of understanding the appropriate time scale and thresholds in which weather conditions influence SIL in order to better predict how projected climate change will influence snow accumulation and hydrology in boreal forests in the future. 相似文献
16.
Ablation processes of snow under a thin dust cover are complicated compared with those under a thick cover, mainly owing to the effects of aggregation (redistribution) of dust particles on the conditions of surface melting. Aggregation of dust particles causes the snow surface to brighten after the initial dust configuration, thus affecting the relationship between initial dust concentration and surface albedo. In order to estimate snow ablation rate under a thin dust cover, we used a composite energy balance model in which the surface albedo is taken as a measured input variable. The estimated results of snow ablation agreed reasonably well with the observation, considering the measurement errors inherited in the snow depressions. Comparison of the two cases, that is, one considering the aggregation of dust particles (observation: albedo variable) and the other without aggregation (assumption: albedo constant), showed that the ablation rates were noticeably lower on the former case. This suggests that the aggregation of dust particles induces a reduction of snow ablation. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
17.
18.
Slopes in fjord environments of Iceland are prone to debris‐flow initiation, responding to a wide variety of meteorological triggering factors, such as rain on snow, rapid snowmelt, long‐lasting rainfall or intense rainfall. If all fjord regions have similar debris flows with regards to their magnitude, their meteorological control is diverse both in space and in time. Debris flows in Northwest Iceland are triggered mostly by rain‐on‐snow and long‐lasting rainfall, while snowmelt is more characteristic in North Iceland, and rainfall has a clear impact in East Iceland. Most debris‐flow events occur on a single slope, and only a few are recorded at the same time in different regions. Observations of the threshold values underline the diversity of debris‐flow initiation, occurring with huge amounts of sudden water supply as well as with very moderate ones. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
19.
Kazuyoshi Suzuki Yuji Kodama Taro Nakai Glen E. Liston Kazukiyo Yamamoto Tetsuo Ohata 《水文科学杂志》2013,58(3):443-467
Abstract We simulated snow processes in a forested region with heavy snowfall in Japan, and evaluated both the regional-scale snow distribution and the potential impact of land-use changes on the snow cover and water balances over the entire domain. SnowModel reproduced the snow processes at open and forested sites, which were confirmed by snow water equivalent (SWE) measurements at two intensive observation sites and snow depth measurements at the Automated Meteorological Data Acquisition System sites. SnowModel also reproduced the observed snow distribution (from the MODIS snow cover data) over the simulation domain during thaw. The observed SWE was less at the forested site than at the open site. The SnowModel simulations showed that this difference was caused mainly by differences in sublimation. The type of land use changed the maximum SWE, onset and duration of snowmelt, and the daily snowmelt rate due to canopy snow interception. Citation Suzuki, K., Kodama, Y., Nakai, T., Liston, G. E., Yamamoto, K., Ohata, T., Ishii, Y., Sumida, A., Hara, T. & Ohta, T. (2011) Impact of land-use changes in a forested region with heavy snowfall in Hokkaido, Japan. Hydrol. Sci. J. 56(3), 443–467. 相似文献
20.
The mountain headwater Bow River at Banff, Alberta, Canada, was subject to a large flood in June 2013, over which considerable debate has ensued regarding its probability of occurrence. It is therefore instructive to consider what information long‐term streamflow discharge records provide about environmental change in the Upper Bow River basin above Banff. Though protected as part of Banff National Park, since 1885, the basin has experienced considerable climate and land cover changes, each of which has the potential to impact observations, and hence the interpretations of flood probability. The Bow River at Banff hydrometric station is one of Canada's longest‐operating reference hydrological basin network stations and so has great value for assessing changes in flow regime over time. Furthermore, the station measures a river that provides an extremely important water supply for Calgary and irrigation district downstream and so is of great interest for assessing regional water security. These records were examined for changes in several flood attributes and to determine whether flow changes may have been related to landscape change within the basin as caused by forest fires, conversion from grasslands to forest with fire suppression, and regional climate variations and/or trends. Floods in the Upper Bow River are generated by both snowmelt and rain‐on‐snow (ROS) events, the latter type which include flood events generated by spatially and temporally large storms such as occurred in 2013. The two types of floods also have different frequency characteristics. Snowmelt and ROS flood attributes were not correlated significantly with any climate index or with burned area except that snowmelt event duration correlated negatively to the Pacific Decadal Oscillation. While there is a significant negative trend in all floods over the past 100 years, when separated based on generating process, neither snowmelt floods nor large ROS floods associated with mesoscale storms show any trends over time. Despite extensive changes to the landscape of the basin and in within the climate system, the flood regime remains unchanged, something identified at smaller scales in the region but never at larger scales. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献