首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a new class of nonnegative tensors—strictly nonnegative tensors.A weakly irreducible nonnegative tensor is a strictly nonnegative tensor but not vice versa.We show that the spectral radius of a strictly nonnegative tensor is always positive.We give some necessary and su?cient conditions for the six wellconditional classes of nonnegative tensors,introduced in the literature,and a full relationship picture about strictly nonnegative tensors with these six classes of nonnegative tensors.We then establish global R-linear convergence of a power method for finding the spectral radius of a nonnegative tensor under the condition of weak irreducibility.We show that for a nonnegative tensor T,there always exists a partition of the index set such that every tensor induced by the partition is weakly irreducible;and the spectral radius of T can be obtained from those spectral radii of the induced tensors.In this way,we develop a convergent algorithm for finding the spectral radius of a general nonnegative tensor without any additional assumption.Some preliminary numerical results show the feasibility and effectiveness of the algorithm.  相似文献   

2.
Two new eigenvalue inclusion sets for tensors are established. It is proved that the new eigenvalue inclusion sets are tighter than that in Qi's paper “Eigenvalues of a real supersymmetric tensor”. As applications, upper bounds for the spectral radius of a nonnegative tensor are obtained, and it is proved that these upper bounds are sharper than that in Yang's paper “Further results for Perron–Frobenius theorem for nonnegative tensors”. And some sufficient conditions of the positive definiteness for an even‐order real supersymmetric tensor are given. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Stimulated by odd-bipartite and even-bipartite hypergraphs, we define odd-bipartite (weakly odd-bipartie) and even-bipartite (weakly evenbipartite) tensors. It is verified that all even order odd-bipartite tensors are irreducible tensors, while all even-bipartite tensors are reducible no matter the parity of the order. Based on properties of odd-bipartite tensors, we study the relationship between the largest H-eigenvalue of a Z-tensor with nonnegative diagonal elements, and the largest H-eigenvalue of absolute tensor of that Ztensor. When the order is even and the Z-tensor is weakly irreducible, we prove that the largest H-eigenvalue of the Z-tensor and the largest H-eigenvalue of the absolute tensor of that Z-tensor are equal, if and only if the Z-tensor is weakly odd-bipartite. Examples show the authenticity of the conclusions. Then, we prove that a symmetric Z-tensor with nonnegative diagonal entries and the absolute tensor of the Z-tensor are diagonal similar, if and only if the Z-tensor has even order and it is weakly odd-bipartite. After that, it is proved that, when an even order symmetric Z-tensor with nonnegative diagonal entries is weakly irreducible, the equality of the spectrum of the Z-tensor and the spectrum of absolute tensor of that Z-tensor, can be characterized by the equality of their spectral radii.  相似文献   

4.
In this paper, first we give the definition of standard tensor. Then we clarify the relationship between weakly irreducible tensors and weakly irreducible polynomial maps by the definition of standard tensor. And we prove that the singular values of rectangular tensors are the special cases of the eigen-values of standard tensors related to rectangular tensors. Based on standard tensor, we present a generalized version of the weak Perron-Frobenius Theorem of nonnegative rectangular tensors under weaker conditions. Furthermore, by studying standard tensors, we get some new results of rectangular tensors. Besides, by using the special structure of standard tensors corresponding to nonnegative rectangular tensors, we show that the largest singular value is really geometrically simple under some weaker conditions.  相似文献   

5.
In this article, the index of imprimitivity of an irreducible nonnegative matrix in the famous PerronFrobenius theorem is studied within a more general framework, both in a more general tensor setting and in a more natural spectral symmetry perspective. A k-th order tensor has symmetric spectrum if the set of eigenvalues is symmetric under a group action with the group being a subgroup of the multiplicative group of k-th roots of unity. A sufficient condition, in terms of linear equations over the quotient ring, for a tensor possessing symmetric spectrum is given, which becomes also necessary when the tensor is nonnegative, symmetric and weakly irreducible, or an irreducible nonnegative matrix. Moreover, it is shown that for a weakly irreducible nonnegative tensor, the spectral symmetries are the same when either counting or ignoring multiplicities of the eigenvalues. In particular, the spectral symmetry(index of imprimitivity) of an irreducible nonnegative Sylvester matrix is completely resolved via characterizations with the indices of its positive entries. It is shown that the spectrum of an irreducible nonnegative Sylvester matrix can only be 1-symmetric or 2-symmetric, and the exact situations are fully described. With this at hand, the spectral symmetry of a nonnegative two-dimensional symmetric tensor with arbitrary order is also completely characterized.  相似文献   

6.
In this paper, we mainly focus on new inclusion sets for eigenvalues of a tensor. First, we propose new inclusion sets for eigenvalues of a tensor, which are sharper than some existing inclusion sets, and obtain the law of distribution of the number of eigenvalues for a tensor. Second, two new classes of tensors are introduced. Third, some bounds on the spectral radii for nonnegative tensors are given. Fourth, some checkable sufficient conditions for the positive definiteness (positive semidefiniteness) of some classes of even-order real symmetric tensors are obtained.  相似文献   

7.
Two singular value inclusion sets for rectangular tensors are given. These sets provide two upper bounds and lower bounds for the largest singular value of nonnegative rectangular tensors, which can be taken as a parameter of an algorithm presented by Zhou et al. (Linear Algebra Appl. 2013; 438: 959–968) such that the sequences produced by this algorithm converge rapidly to the largest singular value of an irreducible nonnegative rectangular tensor.  相似文献   

8.
In this paper, we propose a fast algorithm for computing the spectral radii of symmetric nonnegative tensors. In particular, by this proposed algorithm, we are able to obtain the spectral radii of weakly reducible symmetric nonnegative tensors without requiring the partition of the tensors. As we know, it is very costly to determine the partition for large‐sized weakly reducible tensors. Numerical results are reported to show that the proposed algorithm is efficient and also able to compute the spectral radii of large‐sized tensors. As an application, we present an algorithm for testing the positive definiteness of Z‐tensors. By this algorithm, it is guaranteed to determine the positive definiteness for any Z‐tensor.  相似文献   

9.
The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we first study properties of l k,s -singular values of real rectangular tensors. Then, a necessary and sufficient condition for the positive definiteness of partially symmetric rectangular tensors is given. Furthermore, we show that the weak Perron-Frobenius theorem for nonnegative partially symmetric rectangular tensor keeps valid under some new conditions and we prove a maximum property for the largest l k,s -singular values of nonnegative partially symmetric rectangular tensor. Finally, we prove that the largest l k,s -singular value of nonnegative weakly irreducible partially symmetric rectangular tensor is still geometrically simple.  相似文献   

10.
Stimulated by the study of sufficient matrices in linear complementarity problems, we study column sufficient tensors and tensor complementarity problems. Column sufficient tensors constitute a wide range of tensors that include positive semi-definite tensors as special cases. The inheritance property and invariant property of column sufficient tensors are presented. Then, various spectral properties of symmetric column sufficient tensors are given. It is proved that all H-eigenvalues of an even-order symmetric column sufficient tensor are nonnegative, and all its Z-eigenvalues are nonnegative even in the odd order case. After that, a new subclass of column sufficient tensors and the handicap of tensors are defined. We prove that a tensor belongs to the subclass if and only if its handicap is a finite number. Moreover, several optimization models that are equivalent with the handicap of tensors are presented. Finally, as an application of column sufficient tensors, several results on tensor complementarity problems are established.  相似文献   

11.
Nonnegative tensor decomposition allows us to analyze data in their ‘native’ form and to present results in the form of the sum of rank-1 tensors that does not nullify any parts of the factors. In this paper, we propose the geometrical structure of a basis vector frame for sum-of-rank-1 type decomposition of real-valued nonnegative tensors. The decomposition we propose reinterprets the orthogonality property of the singularvectors of matrices as a geometric constraint on the rank-1 matrix bases which leads to a geometrically constrained singularvector frame. Relaxing the orthogonality requirement, we developed a set of structured-bases that can be utilized to decompose any tensor into a similar constrained sum-of-rank-1 decomposition. The proposed approach is essentially a reparametrization and gives us an upper bound of the rank for tensors. At first, we describe the general case of tensor decomposition and then extend it to its nonnegative form. At the end of this paper, we show numerical results which conform to the proposed tensor model and utilize it for nonnegative data decomposition.  相似文献   

12.
The Perron-Frobenius theory for square, irreducible, nonnegative matrices is generalized by studying the structure of the algebraic eigenspace of an arbitrary square nonnegative matrix corresponding to its spectral radius. We give a constructive proof that this subspace is spanned by a set of semipositive vectors and give a combinatorial characterization of both the index of the spectral radius and dimension of the algebraic eigenspace corresponding to the spectral radius. This involves a detailed study of the standard block triangular representation of nonnegative matrices by giving special attention to those blocks on the diagonal having the same spectral radius as the original matrix. We also show that the algebraic eigenspace corresponding to the spectral radius contains a semipositive vector having the largest set of positive coordinates among all vectors in this subspace.  相似文献   

13.
Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results.  相似文献   

14.
We obtain the sharp upper and lower bounds for the spectral radius of a nonnegative weakly irreducible tensor. By using the technique of the representation associate matrix of a tensor and the associate directed graph of the matrix, the equality cases of the bounds are completely characterized by graph theory methods. Applying these bounds to a nonnegative irreducible matrix or a connected graph (digraph), we can improve the results of L. H. You, Y. J. Shu, and P. Z. Yuan [Linear Multilinear Algebra, 2017, 65(1): 113–128], and obtain some new or known results. Applying these bounds to a uniform hypergraph, we obtain some new results and improve some known results of X. Y. Yuan, M. Zhang, and M. Lu [Linear Algebra Appl., 2015, 484: 540–549]. Finally, we give a characterization of a strongly connected k-uniform directed hypergraph, and obtain some new results by applying these bounds to a uniform directed hypergraph.  相似文献   

15.
Singular values of a real rectangular tensor   总被引:3,自引:0,他引:3  
Real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we systematically study properties of singular values of a real rectangular tensor, and give an algorithm to find the largest singular value of a nonnegative rectangular tensor. Numerical results show that the algorithm is efficient.  相似文献   

16.
We give a new definition of geometric multiplicity of eigenvalues of tensors, and based on this, we study the geometric and algebraic multiplicity of irreducible tensors’ eigenvalues. We get the result that the eigenvalues with modulus ρ(A) have the same geometric multiplicity. We also prove that twodimensional nonnegative tensors’ geometric multiplicity of eigenvalues is equal to algebraic multiplicity of eigenvalues.  相似文献   

17.
The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. Some properties concerning the singular values of a real rectangular tensor were discussed by K. C. Chang et al. [J. Math. Anal. Appl., 2010, 370: 284–294]. In this paper, we give some new results on the Perron-Frobenius Theorem for nonnegative rectangular tensors. We show that the weak Perron-Frobenius keeps valid and the largest singular value is really geometrically simple under some conditions. In addition, we establish the convergence of an algorithm proposed by K. C. Chang et al. for finding the largest singular value of nonnegative primitive rectangular tensors.  相似文献   

18.
In this paper, we obtain the sharp upper and lower bounds for the spectral radius of a nonnegative irreducible matrix. We also apply these bounds to various matrices associated with a graph or a digraph, obtain some new results or known results about various spectral radii, including the adjacency spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance signless Laplacian spectral radius of a graph or a digraph.  相似文献   

19.
Based on the generalized characteristic polynomial introduced by J. Canny in Generalized characteristic polynomials [J. Symbolic Comput., 1990, 9(3): 241–250], it is immediate that for any m-order n-dimensional real tensor, the number of distinct H-eigenvalues is less than or equal to n(m?1) n?1. However, there is no known bounds on the maximal number of distinct Heigenvectors in general. We prove that for any m ? 2, an m-order 2-dimensional tensor A exists such that A has 2(m ? 1) distinct H-eigenpairs. We give examples of 4-order 2-dimensional tensors with six distinct H-eigenvalues as well as six distinct H-eigenvectors. We demonstrate the structure of eigenpairs for a higher order tensor is far more complicated than that of a matrix. Furthermore, we introduce a new class of weakly symmetric tensors, called p-symmetric tensors, and show under certain conditions, p-symmetry will effectively reduce the maximal number of distinct H-eigenvectors for a given two-dimensional tensor. Lastly, we provide a complete classification of the H-eigenvectors of a given 4-order 2-dimensional nonnegative p-symmetric tensor. Additionally, we give sufficient conditions which prevent a given 4-order 2-dimensional nonnegative irreducible weakly symmetric tensor from possessing six pairwise distinct H-eigenvectors.  相似文献   

20.
Finding the minimal H-eigenvalue of tensors is an important topic in tensor computation and numerical multilinear algebra. This paper is devoted to a sum-of-squares (SOS) algorithm for computing the minimal H-eigenvalues of tensors with some sign structures called extended essentially nonnegative tensors (EEN-tensors), which includes nonnegative tensors as a subclass. In the even-order symmetric case, we first discuss the positive semi-definiteness of EEN-tensors, and show that a positive semi-definite EEN-tensor is a nonnegative tensor or an M-tensor or the sum of a nonnegative tensor and an M-tensor, then we establish a checkable sufficient condition for the SOS decomposition of EEN-tensors. Finally, we present an efficient algorithm to compute the minimal H-eigenvalues of even-order symmetric EEN-tensors based on the SOS decomposition. Numerical experiments are given to show the efficiency of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号