首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin H  Su X  He B 《ACS chemical biology》2012,7(6):947-960
In the past few years, several new protein post-translational modifications that use intermediates in metabolism have been discovered. These include various acyl lysine modifications (formylation, propionylation, butyrylation, crotonylation, malonylation, succinylation, myristoylation) and cysteine succination. Here, we review the discovery and the current understanding of these modifications. Several of these modifications are regulated by the deacylases, sirtuins, which use nicotinamide adenine dinucleotide (NAD), an important metabolic small molecule. Interestingly, several of these modifications in turn regulate the activity of metabolic enzymes. These new modifications reveal interesting connections between metabolism and protein post-translational modifications and raise many questions for future investigations.  相似文献   

2.
3.
  相似文献   

4.
5.
6.
7.
8.
Lowering extravesicular pH stimulated Na+-dependent citrate transport in renal brush border membrane vesicles: e.g., at pHout = 5.5, the initial rate of citrate uptake was increased 10-fold compared to parallel control experiments at pH 7.5. The same experimental conditions had little effect on succinate uptake. The influence of pH on citrate transport is a product of the extravesicular H+ concentration; pH gradients did not potentiate the effects nor were proton gradients capable of driving transport in the absence of Na+. The effect of pH is adequately explained if only the mono- and divalent species of citrate (Cit1?, Cit2?) are considered acceptable substrates for transport. The stimulatory influence of pH on transport correlated quite well with pH-related increases in the concentrations of Cit1? and Cit2?, and over the same pH range [Cit3?] was inversely related to citrate uptake. A model of the Na+-dependent dicarboxylate transport system is discussed in which three sodium ions are translocated per molecule of dicarboxylic acid.  相似文献   

9.
Seventy years from the formalization of the Krebs cycle as the central metabolic turntable sustaining the cell respiratory process, key functions of several of its intermediates, especially succinate and fumarate, have been recently uncovered. The presumably immutable organization of the cycle has been challenged by a number of observations, and the variable subcellular location of a number of its constitutive protein components is now well recognized, although yet unexplained. Nonetheless, the most striking observations have been made in the recent period while investigating human diseases, especially a set of specific cancers, revealing the crucial role of Krebs cycle intermediates as factors affecting genes methylation and thus cell remodeling. We review here the recent advances and persisting incognita about the role of Krebs cycle acids in diverse aspects of cellular life and human pathology.  相似文献   

10.
It has been a generally held view that insulin does not significantly affect the incorporation of amino acids into liver protein. This interpretation was based on data obtained from studies using the branched chain amino acids, which are poorly metabolized by the hepatic tissue. The effect of insulin on 14CO2 formation and protein incorporation of several 1-14C-labeled or U-14C-labeled amino acids was studied in isolated rat hepatocytes and diaphragm pieces. It was shown that insulin enhanced 14CO2 formation and protein incorporation primarily of those carbons of amino acids which are metabolized through the mitochondrial Krebs cycle. Using aminooxyacetic acid (0.5 mM), a potent inhibitor of the transamination reaction, it was shown that there exists an "insulin-sensitive" pool of glutamate which is preferentially utilized for protein synthesis in the presence of insulin. The insulin effect on protein incorporation of 14C-labeled glutamate generated in the Krebs cycle was abolished in the presence of aminooxyacetic acid. We interpret these results to signify that mitochondrial transamination of alpha-ketoglutarate to glutamate is essential for insulin stimulation of 14C incorporation into hepatocyte protein.  相似文献   

11.
12.
Metabolomics - The identification of metabolomic dysregulation appears promising for the prediction of type 1 diabetes and may also reveal metabolic pathways leading to beta-cell destruction....  相似文献   

13.
Nonenzymatic post‐translational modification (PTM) of proteins is a fundamental molecular process of aging. The combination of various modifications and their accumulation with age not only affects function, but leads to crosslinking and protein aggregation. In this study, aged human lens proteins were examined using HPLC–tandem mass spectrometry and a blind PTM search strategy. Multiple thioether modifications of Ser and Thr residues by glutathione (GSH) and its metabolites were unambiguously identified. Thirty‐four of 36 sites identified on 15 proteins were found on known phosphorylation sites, supporting a mechanism involving dehydroalanine (DHA) and dehydrobutyrine (DHB) formation through β‐elimination of phosphoric acid from phosphoserine and phosphothreonine with subsequent nucleophilic attack by GSH. In vitro incubations of phosphopeptides demonstrated that this process can occur spontaneously under physiological conditions. Evidence that this mechanism can also lead to protein–protein crosslinks within cells is provided where five crosslinked peptides were detected in a human cataractous lens. Nondisulfide crosslinks were identified for the first time in lens tissue between βB2‐ & βB2‐, βA4‐ & βA3‐, γS‐ & βB1‐, and βA4‐ & βA4‐crystallins and provide detailed structural information on in vivo crystallin complexes. These data suggest that phosphoserine and phosphothreonine residues represent susceptible sites for spontaneous breakdown in long‐lived proteins and that DHA‐ and DHB‐mediated protein crosslinking may be the source of the long‐sought after nondisulfide protein aggregates believed to scatter light in cataractous lenses. Furthermore, this mechanism may be a common aging process that occurs in long‐lived proteins of other tissues leading to protein aggregation diseases.  相似文献   

14.
15.
With the aim of assessing the effect of xiphidiocercarial infection on its gastropod host, Lymnaea luteola, the oxidation of glycolytic and tricarboxylic acid cycle intermediates by digestive gland homogenates of uninfected and infected snails was studied manometrically. The oxidation of glycolytic and NAD-linked substrates was reduced in infected snails. On the other hand, succinate oxidation was very high in infected snails and the reasons for this are discussed.  相似文献   

16.
17.
Krebs cycle and acetylcholine synthesis in nervous tissue.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

18.
19.
Noninvasive tracing of Krebs cycle metabolism in liver   总被引:6,自引:0,他引:6  
To quantify intrahepatic Krebs cycle metabolism, phenyl acetate, excreted in urine as a glutamine conjugate, was given to healthy subjects infused with [3-14C]lactate. They were studied after 60 h of fasting and when given glucose after an overnight fast. Distributions of 14C in glutamate from urinary phenylacetylglutamine and blood glucose were determined. Corrections to the distributions because of the fixation of 14CO2 formed from the [3-14C]lactate were determined by administering [14C]bicarbonate. Comparisons of distributions in glucose and glutamate support the assumption that the glutamate distributions reflect those in hepatic alpha-ketoglutarate. From the distributions in glutamate, the extent of exchange of labeled with unlabeled carbons and relative flow rates in the cycle in liver were estimated. Dilution of 14C by 12C in the cycle was found in the fasted but not the fed state. In the fasted state, pyruvate carboxylation was estimated to be at least twice the rate of Krebs cycle flux and the rate of pyruvate's decarboxylation less than 1/25 the rate of its carboxylation. In the fed state, the rate of decarboxylation was estimated to be between one-sixth and one-half the rate of carboxylation. The rate of conversion of oxalacetate to fumarate in both states appeared to be greater than 6 times the rate of Krebs cycle flux.  相似文献   

20.
Summary The possibility of amino acids biosynthesis from sucrose, metabolites of Krebs cycle or glyoxylate and ammonium by intact bacteroids has been studied. The suspension of intact Rhizobium lupini bacteroids in phosphate buffer solution pH 7.8 was shown to catalyse the biosynthesis from sucrose and ammonium of some amino acids, such as alanine, aspartic and glutamic acids, glycine and serine. The yield of alanine and aspartic acid was 2.5–3 times higher than that of other amino acids, which were formed in almost equal quantities. Intact bacteroids were also found to catalyse the biosynthesis of aspartic and glutamic acids, alanine and glycine from ammonium and Krebs cycle metabolites such as fumaric acid (FA), oxaloacetic acid (OAA), pyruvic acid (PA), a-ketoglutaric acid (a-KGA), malic acid (MA), as well as from glyoxylic acid (GOA). The biosynthesis of aspartic acid from fumaric acid was dominant. Besides that, the suspension of intact bacteroids catalysed transamination of aspartic and glutamic acids, the transamination of aspartic acid being especially intense with -KGA and GOA. Aspartic acid was synthesized most efficiently through the amination of fumaric acid, while glutamic acid was better synthesized through the transamination of aspartic acid with -KGA than through reductive amination of -KGA.The experimental data proved that intact bacteroids posess Krebs cycle enzymes and primary ammonia assimilation enzymes. This enzyme complex permits bacteroids to detoxify ammonia, which they produce using sucrose and metabolites of Krebs cycle as the sources of carbon.The data obtained are of great interest as they prove the importance of bacteroids in the synthesis of amino acids from ammonium which is formed in the course of N2-fixation, and sucrose available from leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号