首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 828 毫秒
1.
在汽车防抱死制动系统(简称ABS)的控制过程中,一般是由电子控制单元控制二位三通的高速开关电磁阀来实现制动轮缸的压力增压、保压和减压三种状态的控制.为了提高系统的响应速度和控制精度,研究采用PWM控制高速开关电磁阀的液压制动式防抱死制动系统,分析了PWM控制原理、高速开关电磁阀的工作特性以及高速开关电磁阀在汽车防抱死制动装置中的具体应用.  相似文献   

2.
常开式高速开关阀电磁铁的设计与性能仿真   总被引:1,自引:1,他引:0  
高速开关阀作为汽车防抱死制动系统的重要元件,其动态响应性能决定着防抱死制动系统的安全性和有效性.为此设计了一种常开式高速开关阀,并利用Ansoft软件研究了其开关电磁铁的电磁场特性,确定了电磁铁的线圈参数;将获得的参数输入到Simulink建立的开关阀系统模型中,并仿真分析,得到运行频率为37 Hz,这一指标满足防抱死制动系统的性能要求.  相似文献   

3.
李慧  朱德文 《机电工程》2007,24(5):83-85,98
采用脉宽调制信号对二位三通高速电磁开关阀进行驱动控制,能够灵活地对喷油量、喷油正时进行控制,采用PWM控制方式对柴油机共轨式电控系统进行控制。主要分析了柴油机共轨式电控燃烧油喷射系统关键部件——高速开关电磁阀的结构、PWM控制原理,以及由电控单元所产生的脉宽调制信号控制下的高速开关电磁阀动态响应特性。  相似文献   

4.
高速开关电磁阀力控系统线性增压控制研究   总被引:4,自引:0,他引:4  
针对防抱死制动系统线性增压需求,建立某高速开关电磁阀阀芯力平衡数学模型,给出阀芯平衡状态附近线性化增量微分表达式,建立液压缸压力变化数学模型,给出液压缸压差的增量表达式,得到高速开关电磁阀力控系统压力和通电电流的传递函数。通过某高速开关电磁阀电磁场和流场的有限元分析,得到阀芯所受电磁力、阀芯所受液压力及流量随阀口开度的变化曲线,研究电磁力、液压力与流量之间的定量关系,阐述高速开关电磁阀力控系统线性增压基本原理,给出力平衡点的稳定条件,提出能够实现线性增压的控制方式;结合流场、电磁场分析结果建立某高速开关阀整体模型,对电磁阀开启过程进行仿真,并进行线性增压试验,验证了该控制方式对于恒流量输出的可行性和仿真计算方法与结果的正确性。  相似文献   

5.
汽车ESP中采用的高速开关阀是二位二通电磁阀,通过电磁阀的开启或关闭来实现车轮轮缸的增压、保压和减压。在(10~100)Hz低频范围内,高速开关阀虽实现了平均开度控制,但阀还是会出现时开时闭的状态,且电磁阀在状态切换中存在压力响应滞后现象。为了提高液压系统的控制精度,提出了脉宽调制(Pulse Width Modulation,PWM)控制高速开关电磁阀的仿真模型,研究分析了调制频率在高频情况下,通过改变PWM下的占空比,实现高速开关阀压力精确控制的效果,达到ESP制动压力响应快且平稳。  相似文献   

6.
随着汽车电子技术的发展和人们对汽车安全性的重视,汽车防抱死制动系统(ABS)己逐渐成为汽车的标准配置。本文以工程实用为原则,设计了ABS电子控制单元的硬件部分,包括轮速信号调理电路、运算电路、电磁阀驱动电路、故障检测电路等,为开发ABS的电子控制单元提供了参考。  相似文献   

7.
根据气动泵气压控制系统的需求,设计了基于高速开关阀的气动泵气压控制系统.首先对数字阀的概念、优点和分类进行了概述.介绍了气压控制系统结构,分析了以PWM方式工作的高速开关阀控制原理.采用单片机,设计了气压控制系统硬件结构,开发了驱动电路.最后阐述了PWM信号的产生程序和PWM控制方式.该系统具有开闭效果好、功耗低等优点,而且PWM信号频率和占空比均可调节,表明了高速开关阀在气压控制系统中有广泛的使用价值.  相似文献   

8.
穆洪远  程硕  李凯  李亮  潘盼  赵洵 《机械工程学报》2021,57(22):247-254
受限于成本原因,电控液压制动系统中多使用高速开关阀,但在液压阀开关控制中电磁阀的敲击噪声、液压冲击噪声和压力波动造成制动控制品质和精度劣化,因此通过脉冲宽度调制控制实现高速开关阀线性化调控性能是此类高速开关阀的设计关键。高速开关阀动态运动特性受瞬态液动力、非线性电磁力与机械惯性、弹簧力综合作用,电磁阀动力学特性决定其线性调控工作范围窄,需要系统设计电磁阀系列结构力学参数,才能实现电磁阀阀口一定开度范围内的多种非线性力的线性化变化。为此,建立高速开关阀与液压控制单元的动力学模型与联合仿真模型,通过仿真与试验验证,分析出阀座锥角、节流孔径、气隙大小等结构参数对电磁阀线性特性的影响。从而设计出合理的电磁阀结构参数,并应用于一款液压控制回路中,实现线性工作范围的拓宽,满足汽车制动安全控制的要求。  相似文献   

9.
基于高速开关阀的AMT换挡力控制研究   总被引:1,自引:0,他引:1       下载免费PDF全文
换挡过程中换挡力的控制是AMT系统的关键技术之一。对于电控液动式AMT,可以通过高速开关阀的脉宽调制(PWM)控制实现换挡力的控制。该文中首先分析了PWM控制方式下高速开关阀的工作特性;然后基于电磁阀“开/关”特性试验及静态流量理论,提出了确定PWM调制控制周期和占空比的方法;最后,进行了静态调压试验和动态换挡过程控制试验。试验结果表明,该方法能够根据已知油源压力范围确定满足目标控制要求的PWM控制参数。  相似文献   

10.
基于高速开关电磁阀技术的压力控制系统设计   总被引:17,自引:3,他引:17  
高速开关电磁阀是电液控制系统的新型元件。随着高速开关电磁阀的出现,作者设计了一个基于高速开关电磁阀的压力控制系统,通过采用脉冲宽度调制(PWM)技术,实现了对该系统压力的比例控制。  相似文献   

11.
夏晶晶 《中国机械工程》2012,(16):2010-2014
在普通脉宽调制(PWM)信号驱动下,高速开关电磁阀的开启和关闭时间较长,反应慢,影响了高速开关电磁阀的控制性能。为了进一步提高高速开关阀的控制性能,在分析高速开关阀工作特性的基础上,提出了多路混合驱动方法,缩短了高速开关阀的开启和关闭时间,减小了压力控制时的压力波动,改善了高速开关阀的控制性能。在汽车离合器起步控制中,使用该方法很好地改善了汽车的起步性能,发动机转速比较平稳,从动盘转速增加趋势的波动较小。  相似文献   

12.
In this paper, an anti-lock brake system (ABS) for commercial buses is proposed based on a fuzzy-logic controller and a sliding-mode observer of the vehicle speed. The brake controller generates pulse width modulated (PWM) control inputs to the solenoid valve of each brake, as a function of the estimated wheel slip ratio. PWM control inputs at the brakes significantly reduce chattering in the brake system compared with conventional on-off control inputs. The sliding-mode observer estimates the vehicle speed with measurements of wheel speed, which is then used to compute the wheel slip ratio. The effectiveness of the proposed control algorithm is validated by a series of computer simulations of bus driving, where the 14-DOF bus model is used.  相似文献   

13.
高频小流量高速开关阀用于汽车防抱死制动系统 (ABS)增压与减压的控制,在不同温度环境下,其可靠的动态特性是ABS正常工作的重要指标。高速开关阀阀芯高频运动过程中,主要受到电磁力、液压力等因素的影响。针对液压力,建立高速开关阀不同温度、阀口两端压差、阀口开度的有限元仿真模型,分析温度、阀口两端压差和阀口开度不同时,高速开关阀液压力的变化规律。仿真结果得知,在相同的阀口开度和压差下,液压力随温度的升高而减小;阀口开度越大,液压力受温度的影响越大;同一压差和温度下,液压力随阀口开度的增大而减小。通过探寻温度、阀口两端压差及阀口开度大小对高速开关阀液压力的影响,为准确研究高速开关阀动态特性提供理论依据,从而为提高汽车ABS响应特性奠定理论基础。  相似文献   

14.
以研究智能混合动力汽车控制技术与深度强化学习算法为目标,首先,在两辆混合动力汽车的跟驰环境中,针对领航车提出一种基于深度值网络算法的能量管理策略,实现深度强化学习对发动机与机械式无级变速器的多目标协同控制;其次,针对跟随车建立基于深度强化学习的分层控制模型,实现面向智能混合动力汽车的上层跟车控制与下层能量管理;最后,仿真验证分层控制模型的有效性。结果表明,基于深度强化学习的跟车控制策略具有理想的跟踪性能;同时,基于深度强化学习的能量管理策略在领航车与跟随车中均实现了较好的燃油经济性;此外,基于深度强化学习的能量管理策略输出每组控制动作的平均时间为1.66 ms,保证了实时应用的潜力。  相似文献   

15.
高速开关阀高频脉宽调制控制有效占空比工作范围的拓宽   总被引:6,自引:1,他引:6  
高速开关阀在高频脉宽调制(Pulse width modulation,PWM)控制下阀芯可悬浮在某一开度,调节占空比即可改变阀口开度,实现对流量和压力的线性控制,因此在车辆控制系统得到广泛应用。但我国自主开发的高速开关阀PWM控制的有效占空比工作范围小,阀芯较易全开或全闭,为提高阀的可控性和控制精度,需要研究拓宽占空比的工作范围。基于汽车电子稳定程序(Electronic stability program,ESP)的高速开关阀,深入分析阀芯液动力的影响因素,应用AMESim、Matlab软件建立ESP液压系统的联合仿真模型,并经过试验验证,通过仿真得出阀座锥角、入口孔径对阀芯位移的影响,提出拓宽PWM控制占空比有效工作范围的关键参数,为高速开关阀的设计开发提供参考依据。  相似文献   

16.
For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation.  相似文献   

17.
高速开关阀及其发展趋势   总被引:5,自引:0,他引:5  
高速开关阀是一种新型的数字式电液转换控制元件,与其它液压元件相比还有着非常明显的优势,并可直接采用计算机进行数字控制。介绍了国内外高速开关阀的分类及其驱动器方式,国内外高速开关阀控制技术研究和发展的方向。  相似文献   

18.
基于高速数据采集、PWM控制、差压测密封技术,研制了一套防滑阀性能检测系统,实现了对防滑阀的动作响应时间、阶段充排气性能和密封性检测。在模拟实车制动工况条件下,检测系统通过输出快速响应的PWM信号控制进气电磁阀、排气电磁阀高速通断,以此实现对防滑阀性能的高精确检测。测试系统经重复性实验结果表明,阶段充排气性能的最大测量不确定度为0.834 kPa,密封性检测的最大不确定度为0.011 kPa。  相似文献   

19.
液压控制单元(HCU)是车辆制动系统的关键执行机构之一。利用液压控制单元对制动压力精确控制,是实现车辆电子稳定性控制等主动安全功能的基础。高速开关阀是液压控制单元的重要构件,通常运用脉冲宽度调制技术控制开关阀开度保持在开关位置之间,实现压力精确控制。为了深入研究高速开关阀的比例开度功能,基于开关阀的机械结构与电磁特性,建立了电磁阀的理论模型。对不同压力与阀芯开度下开关阀的流量进行了理论计算,并通过台架实验验证了理论模型的正确性,为制动压力精确控制提供了重要的理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号