首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metal-organic framework copper-1,3,5-benzenetricarboxylate (Cu-BTC) was evaluated for its ability to selectively interact with Lewis-base analytes by examining retention on gas-chromatographic columns packed with Chromosorb W HP that contained 3.0% SE-30 along with various loadings of Cu-BTC. Scanning electron microscopy images of the support material showed the characteristic Cu-BTC crystals embedded in the SE-30 coating on the diatomaceous support. The results indicated that the Cu-BTC-containing stationary phase had limited thermal stability (220 °C) and strong general retention for analytes. Kováts index calculations showed selective retention (amounting to about 300 Kováts units) relative to n-alkanes for many small Lewis-base analytes on a column that contained 0.75% Cu-BTC compared with an SE-30 control. Short columns that contained lower loadings of Cu-BTC (0.10%) allowed elution of nitroaromatics; however, selectivity was not observed for aromatic compounds (including nitroaromatics) or nitroalkanes. Observed retention characteristics are discussed.  相似文献   

2.
A simple, inexpensive method based on solid-phase extraction (SPE) on sawdust from Cedrus deodera has been developed for speciation of Cr(III) and Cr(VI) in environmental water samples. Because different exchange capacities were observed for the two forms of chromium at different pH—Cr(III) was selectively retained at pH 3 to 4 whereas Cr(VI) was retained at pH 1—complete separation of the two forms of chromium is possible. Retained species were eluted with 2.5 mL 0.1 mol L−1 HCl and 0.1 mol L−1 NaOH. Detection limits of 0.05 and 0.04 μg mL−1 were achieved for Cr(III) and Cr(VI), respectively, with enrichment factors of 100 and 80. Recovery was quantitative using 250 mL sample volume for Cr(III) and 200 mL for Cr(VI). Different kinetic and thermodynamic properties that affect sorption of the chromium species on the sawdust were also determined. Metal ion concentration was measured as the Cr(VI)–diphenylcarbazide complex by UV–visible spectroscopy. The method was successfully applied for speciation of chromium in environmental and industrial water samples.  相似文献   

3.
Fan Z 《Talanta》2006,70(5):1164-1169
Hg(II)-imprinting thiol-functionalized mesoporous sorbent was prepared by a sol–gel method and characterized by X-ray diffraction (XRD), FT-IR spectroscopy and nitrogen gas adsorption–desorption. The static adsorption capacity of the Hg(II)-imprinted and non-imprinted sorbent was 78.5 and 26.6 mg g−1, respectively. The breakthrough capacity was 4.46 mg g−1, and the relative selectivity coefficient for Hg(II) in the presence of Cd and Pb was 3.3 and 3.9, respectively. A new method using a micro-column packed with Hg(II)-imprinting thiol-functionalized mesoporous sorbent has been developed for preconcentration of trace mercury prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The effects of pH, sample flow rate and volume, elution solution and interfering ions on the recovery of the analyte have been investigated. The limit of detection was 0.39 ng ml−1 with a concentration factor of 150 times. The developed method has been applied to the determination of trace mercury in some biological and environmental samples with satisfactory results. The accuracy was assessed through recovery experiments and analysis of certified reference material.  相似文献   

4.
Xiangjun Liu 《Talanta》2009,78(1):253-2300
A new kind of polymer sorbent based on the specific interaction of Hg(II) with nucleic acid base, thymine, is described for the selective adsorption of Hg(II) from aqueous solution. Two types of sorbents immobilized with thymine were prepared by one-step swelling and polymerization and graft polymerization, respectively. The maximum static adsorption capacity of the new polymer sorbents for Hg(II) is proportional to the density of thymine on their surface, up to 200 mg/g. Moreover, the new kind polymer sorbent shows excellent selectivity for Hg(II) over other interfering ions, such as Cu(II), Cd(II), Zn(II), Co(II), Ca(II) and Mg(II), exhibits very fast kinetics for Hg(II) adsorption from aqueous solution, and can be easily regenerated by 1.0 M HCl. It also has been successfully used for the selective adsorption of spiked Hg(II) from real tap water samples. This new thymine polymer sorbent holds a great promise in laboratory and industrial applications such as separation, on-line enrichment, solid-phase extraction, and removal of Hg(II) from pharmaceutical, food and environmental samples.  相似文献   

5.
We report on the synthesis of Fe3O4-functionalized metal-organic framework (m-MOF) composite from Zn(II) and 2-aminoterephthalic acid by a hydrothermal reaction. The magnetic composite is iso-reticular and was characterized by FTIR, X-ray diffraction, SEM, magnetization, and TGA. The m-MOF was then applied as a sorbent for the solid-phase extraction of trace levels of copper ions with subsequent quantification by electrothermal AAS. The amount of sorbent applied, the pH of the sample solution, extraction time, eluent concentration and volume, and desorption time were optimized. Under the optimum conditions, the enrichment factor is 50, and the sorption capacity of the material is 2.4 mg g?1. The calibration plot is linear over the 0.1 to 10 μg L?1 Cu(II) concentration range, the relative standard deviation is 0.4 % at a level of 0.1 μg L?1 (for n?=?10), and the detection limit is as low as 73 ng L?1. We consider this magnetic MOF composite to be a promising and highly efficient material for the preconcentration of metal ions.
Figure
Magnetic metal-organic frameworks was synthesized and used as a new sorbent for lead adsorption with detection by electrothermal atomic absorption spectrometry.  相似文献   

6.
In the current work, the Cu-based metal-organic framework (MOF) (Cu-BDC) was synthesized through a simple and one-pot solvothermal method and used as a sorbent for dispersive solid-phase extraction (DSPE) of gallic acid (GA) from orange juice samples followed by high-performance liquid chromatography-ultraviolet (HPLC-UV) determination. The prepared Cu-BDC was fully characterized using different analysis including Fourier-transform infrared spectroscopy (FT-IR), X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS) and Brunauer-Emmett-Teller (BET). The prepared Cu-BDC had exceptional properties in terms of high specific surface area (400 m2 g−1) and high adsorption capacity (300 mg g−1) toward GA. The influence of effective factors on extraction recovery of GA such as sorbent dosage, ultrasonic time, washing solvent volume and eluent solvent volume was evaluated using a central composite design (CCD) based response surface methodology (RSM). Under the optimized conditions, the presented method showed a wide linear range of 0.5–15.0 mg L−1 with a detection limit of (0.145 mg L−1) and acceptable repeatability (RSD < 6.0%) which shows the applicability of the proposed method for accurate determination of GA from complicated orange juice samples.  相似文献   

7.
Numerous mercaptopropyl-functionalized silica spheres have been prepared by either post-synthesis grafting of MCM-41 and MCM-48 or self-assembly co-condensation of mercaptopropyltrimethoxysilane (MPTMS) or mercaptopropyltriethoxysilane (MPTES) and tetraethoxysilane (TEOS) precursors in hydroalcoholic medium in the presence of a cationic surfactant as templating agent and ammonia as catalyst. These materials of approximately the same particle size and morphology featured different functionalization levels, various degrees of structural order, and variable distribution of thiol groups in the mesopores. Their reactivity in solution has been studied using Hg(II) as model analyte. Total accessibility (on a 1:1 S:Hg stoichiometry basis) was demonstrated and quantified for well-ordered materials whereas less open and less organized structures with high degrees of functionalization were subject to less-than-complete loadings. Capacities measured at pH 2 were lower than at pH 4 because of distinct mercury-binding mechanisms. Kinetics associated to the uptake process were studied by in situ electrochemical monitoring of Hg(II) consumption from aqueous suspensions containing the various adsorbents. They indicate only little difference between materials of the MCM-41 and MCM-48 series at similar functionalization levels, fast mass transport in well-ordered mesostructures in comparison to the poorly or non-ordered ones (except at pH 2 where charge formation induced some restriction in materials characterized by long-range structural order), and even faster processes in the wormlike frameworks (characterized by shorter range structural order). Hg(II) binding to thiol-functionalized materials obtained by post-synthesis grafting was found to occur more rapidly in the early beginning of the uptake process as a result of a higher concentration of binding sites at the pore entrance in comparison to the more homogeneous distribution of these groups in the mesochannels of materials obtained by co-condensation.  相似文献   

8.
We describe a novel magnetic metal-organic framework (MOF) for the preconcentration of Cd(II) and Pb(II) ions. The MOF was prepared from the Fe3O4-pyridine conjugate and the copper(II) complex of trimesic acid. The MOF was characterized by IR spectroscopy, elemental analysis, SEM and XRD. A Box-Behnken design through response surface methodology and experimental design was used to identify the optimal parameters for preconcentration. Extraction time, amount of magnetic MOF and pH value were found to be critical factors for uptake, while type, volume, concentration of eluent, and elution time are critical in the elution step. The ions were then determined by FAAS. The limits of detection are 0.2 and 1.1 μg?L?1 for Cd(II), and Pb(II) ions, respectively, relative standard deviations are <4.5% (for five replicates at 50 μg?L?1 of Cd(II) and Pb(II) ions), and the enrichment capacity of the MOF is at around 190 mg?g?1 for both ions which is higher than the conventional Fe3O4-pyridine material. The magnetic MOF was successfully applied to the rapid extraction of trace quantities of Cd(II) and Pb(II) ions in fish, sediment, and water samples.
Figure
Schematic illustration of synthesized magnetic MOF-pyridine nanocomposite  相似文献   

9.
Reaction of FeSO4·7H2O with 5-(isonicotinamido)isophthalic acid (H2INAIP) in the presence of NaOH results in the formation of a two-dimensional network [Fe(INAIP)(H2O)]n·2nH2O. In the complex, each INAIP2? ligand links three Fe(II) atoms to give a double-chain structure using its two carboxylate groups in ?? 1?C?? 1:?? 1 and ?? 2?C?? 1:?? 1 coordination modes. The chains are interlinked to form a layer structure through Fe?CN interactions, which it is extended to a three-dimensional supramolecular structure by H-bonding interactions. The thermal and magnetic properties of the complex were investigated, and antiferromagnetic interactions were observed. Moreover, the adsorption behavior shows that the title complex has obviously selective adsorption of CO2 over N2 after the removal of the solvent molecules within the pores.  相似文献   

10.
11.
Silver nanoparticles (Ag NPs) modified with sodium 2-mercaptoethanesulfonate (mesna) exhibit strong surface-enhanced Raman scattering (SERS). Their specific and strong interaction with heavy metal ions led to a label-free assay for Hg(II). The covalent bond formed between mercury and sulfur is stronger than the one between silver and sulfur and thus prevents the adsorption of mesna on the surface of Ag NPs. This results in a decrease of the intensity of SERS in the presence of Hg(II) ions. The Raman peak at 795?cm?1 can be used for quantification. The effect of the concentration of mesna, the concentration of sodium chloride, incubation time and pH value on SERS were optimized. Under the optimal conditions, the intensity of SERS decreases with increasing concentration of Hg(II). The decrease is linear in the 0.01 and 2?μmol L?1 concentration range, with a correlation coefficient (R2) of 0.996 and detection limit (S/N?=?3) is 0.0024?μmol L?1. The method was successfully applied to the determination of the Hg(II) in spiked water samples.
Figure
SERS spectra of mesna-Ag NPs system in the presence of Hg2+. Concentrations of Hg2+: (1) 0.1×10-7, (2) 1×10-7, (3) 3.5×10-7, (4) 5×10-7, (5) 12×10-7, (6) 20×10-7mol L-1  相似文献   

12.
Upon light excitation MOF-5 behaves as a semiconductor and undergoes charge separation (electrons and holes) decaying in the microsecond time scale. The actual conduction band energy value was estimated to be 0.2 V versus NHE with a band gap of 3.4 eV. Photoinduced electron transfer processes to viologen generates the corresponding viologen radical cation, while holes of MOF-5 oxidizes N,N,N',N'-tetramethyl-p-phenylenediamine. One application investigated for MOF-5 as a semiconductor has been the shape-selective photocatalyzed degradation of phenol in aqueous solutions.  相似文献   

13.
The author describes the preparation of a magnetic metal organic framework of type MOF-199 containing magnetite (Fe3O4) nanoparticles carrying covalently immobilized 4-(thiazolylazo) resorcinol (Fe3O4@TAR). This material is shown to represent a viable sorbent for separation and preconcentration of Cd(II), Pb(II), and Ni(II) ions. Box-Behnken design was applied to optimize the parameters affecting preconcentration. Following elution with 0.6 mol L?1 EDTA, the ions were quantified by FAAS. The capacity of the sorbent ranged between 185 and 210 mg g?1. The limits of detection are 0.15, 0.40, and 0.8 ng mL?1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <8.5 %. The method was successfully applied to the rapid extraction of trace amounts of these ions from sea food and agri food.
Graphical abstract (a) A schematic diagram of Fe3O4 functionalization by TAR (4-(thiazolylazo) resorcinol). (b) The schematic illustration of the magnetic metal organic framework-TAR nanocomposite. H3BTC: benzene-1,3,5-tricarboxylic acid; TEA: triethylamine; 3-CPS: 3-chloropropyl triethoxysilane.
  相似文献   

14.
A simple and reliable method has been developed using polymeric material containing phthalic acid as a chelating agent to concentrate ultratrace amounts of lead ions in aqueous solutions. After characterization by CHN, IR, and thermal studies, the static and dynamic sorption behavior of Pb(II) ions onto new synthetic resin has been investigated. The sorption has been optimized with respect to pH, shaking speed, and contact time between the two phases. Maximum sorption is achieved from solution of pH 5-8 after 10 min agitation time. The lowest concentration for quantitative recovery is 5.8 ng cm(-3) with a preconcentration factor of approximately 850. The kinetics of sorption follows the first-order rate equation with the rate constant k=0.58+/-0.04 min(-1). The variation of the equilibrium constant K(c) with temperature between 10 and 50 degrees C yields values of DeltaH, 52.4+/-1.65 kJmol(-1), DeltaS, 186+/-5.21 Jmol(-1)K(-1), and DeltaG(303K), -4.15+/-0.002 kJmol(-1). The sorption data of Pb(II) ions in the concentration range from 2.41x10(-6) to 1.44x10(-4) molL(-1) follows the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms at all temperatures investigated. The sorption of Pb(II) ions onto synthesized resin in the presence of common anions and cations has also been measured. The possible sorption mechanism of Pb(II) ions onto phthalic acid modified XAD-16 is also discussed. The sorption procedure is utilized to preconcentrate Pb(II) ions prior to their determination in automobile exhaust particulates by atomic absorption spectrometry using direct and standard addition methods.  相似文献   

15.
Tandon KN 《Talanta》1966,13(1):161-163
Congo Red is suggested as an indicator for the direct titration of mercury(II) ions with EDTA or with potassium thiocyanate. An interference study of a number of cations has been made. The titration with thiocyanate is more advantageous than that with EDTA.  相似文献   

16.
Olive cake as low-cost abundantly available sorbent has been characterized by N2 at 77 K adsorption, porosity analysis, elemental analysis and IR spectra and has been used for preconcentrating of uranium(VI) and thorium(IV) ions prior to their determination spectrophotometrically. The optimum pH values for quantitative sorption of U(VI) and Th(IV) are 4–7 and 3–7, respectively. The enrichment factor for the preconcentration of U(VI) and Th(IV) were found to be 125 and 75 in the given order. The sorption capacity of olive cake is in the range of 2,260–15,000 μg g−1 for Th(IV) and in the range of 1,090–17,000 μg g−1 for U(VI) at pH 3–7. The sorbent exhibits good reusability and the uptake and stripping of the studied ions were fairly rapid. The elution of U(VI) and Th(IV) was performed with 0.3–1 M HCl/1–2 M HNO3 and 0.3–0.8 M HCl/1 M HNO3, respectively. The precision of the method was 1.8 RSD% for U(VI) and 2.5 RSD% for Th(IV) in a concentration of 1.00 μg mL−1 for 10 replicate analysis. The influence of some electrolytes and cations as interferents was discussed. Separation of U(VI) and Th(IV) from other metal ions in synthetic solution was achieved.  相似文献   

17.
Millimeter-sized single MOF-5 crystals are used as "chromatographic columns" to effectively separate mixtures of organic dyes. Remarkably, owing to the nanoscopic pore dimensions and the molecular-level interactions between the migrating molecules and the MOF scaffold, the separations occur over a distance of only a few hundred micrometers which is unambiguously confirmed by fluorescence confocal microscopy.  相似文献   

18.
The binding properties of mesoporous thiol-functionalized silica sorbents towards mercury(II) species were studied as a function of pH in a wide range (0-8), in the absence or in the presence of competing metal ions, from batch equilibration experiments. To this end, a series of thiol-functionalized adsorbents characterized by different structures (from completely disordered amorphous solids to highly ordered mesostructures), variable density of organic ligands (from 1 to 4 mmol g−1), and various degrees of porosity, have been prepared either by post-synthesis grafting or by the co-condensation route. Hg(II) binding to these thiol-functionalized silica samples is strongly dependent on pH, especially in acidic medium (pH < 4) where non-hydrolyzed Hg2+ species become dominant. This behavior was found to be significantly affected by the degree of structural organization of the materials (amorphous or ordered mesoporous solids, short-range versus long-range structural order) and the adsorbent composition (density of functional groups). A beneficial effect of high structural order was observed in both the capacity (access to a high number of binding sites) and selectivity (towards other metal ions) for the ordered mesoporous sorbents in comparison to the amorphous gels, but this was only true for pH values down to 4, where Hg(II) species are mainly in the form of Hg(OH)2. In more acidic medium, however, the sorption of the non-hydrolyzed Hg2+ species underwent dramatic loss of effectiveness, which resulted in both lower capacities and worse selectivity. These restrictions were more marked when increasing the density of functional groups in the materials and, to lesser extent, when decreasing their level of structural ordering. They were interpreted on the basis of electrostatic considerations as the binding of Hg2+ to thiol groups leads to the generation of positively charged complexes in the host material while that of Hg(OH)2 involves the formation of neutral moieties. Possible regeneration of sorbents and re-use were also discussed.  相似文献   

19.
The detection of explosives is crucial for homeland security, environmental cleaning, and military issues. As a new class of porous materials, metal-organic frameworks (MOFs) are promising platforms for the detection of organic explosives. In this work, a new pillar-layered Cd(II) MOF, [CdL0.5dpe0.5]·2H2O (BUT-202, H4L = 4,8-disulfonaphthalene-2,6-dicarboxylic acid, dpe = 1,2-bis(4-pyridyl)ethylene), was synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and elemental analysis. BUT-202 has good fluorescent properties, which can be selectively quenched by trace amounts of 2,4,6-trinitrophenol (TNP) in DMF with low detection limit of 0.2 μM.  相似文献   

20.
In this paper, a novel magnetic solid-phase extraction method using three-dimensional graphene-based magnetic nanocomposite as adsorbent for the preconcentration of several chlorophenols from water samples prior to high-performance liquid chromatography analysis was developed. Various experimental parameters were investigated. Under the optimum conditions, the enrichment factors of the method were in the range of 186–312, and the limit of detection(S/N = 3) was 0.10 ng/mL. The recoveries of the method were in the range between 85.1% and 101.2%. The developed method has been successfully applied to the determination of chlorophenols in environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号