首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
Summary. To substitute cross-linked photopolymers in rapid prototyping of mold materials and therefore extend the range of materials which can be casted, organo-soluble photopolymers were developed. Branched bisalkylacrylamides were suitable as base component for such formulations, due to their high reactivity, good mechanical properties, and excellent solubility of the formed polymers. These molding materials were used to prepare cellular biocompatible materials which could be used as bone replacement materials. Biocompatible crosslinkers based on methacrylates from hydrolyzed gelatine or lactic acid ethyleneglycol blockcopolymers and commercially available reactive diluents are the base components of such a formulation. Biocompatibility was investigated by osteoblast-like cells. Cellular biocompatible parts were obtained by thermal polymerization in soluble mould materials prepared by 3D-photoshaping.  相似文献   

2.
The last decade has seen a remarkable interest in the use of biocompatible and biodegradable polymers as scaffolds for tissue engineering. The fabrication of 3D scaffolds by lithography‐based additive manufacturing technology (AMT) represents an appealing approach. As poly(lactic acid), the state of the art biocompatible and biodegradable material, cannot be processed by these photopolymerization‐based techniques, it has so far been necessary to use selected (meth)acrylates. By developing new photopolymers based on vinyl carbonates and vinyl carbamates as a reactive group we have been able to avoid most of the disadvantages of classical (meth)acrylate‐based photopolymers. The new generation of biocompatible monomers show low cytotoxicity, have good storage stability, and are sufficiently photoreactive to be structured by lithography based AMT. The mechanical properties and rates of degradation of the polymers can be easily tuned over a broad range. Degradation results in the formation of nonacidic and nontoxic degradation products of low molecular weight that can be easily transported within the human body. Initial in vivo tests showed significant osseointegration of the 3D cellular scaffolds and no signs of implant rejection. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Three-component photopolymers comprising a photoacid generator, a bifunctional vinyl ether monomer and an aqueous base-soluble polymer as matrix were developed. These photopolymers exhibit either positive- or negative-working character, depending on the prebake temperature and the concentration of the photoacid generator. When the prebake temperature is high, the photo-polymer film is made insoluble in aqueous base and organic solvents by the formation of crosslinks. However, on exposure to light, the crosslinks are decoupled by the photogenerated acid and the photopolymer layer becomes again soluble in aqueous base, resulting in a positive-working character. When the concentration of the photoacid generator is low enough, the photopolymer has a negative-working character due to the cationic polymerization of vinyl ethers. The mechanism of the photochemical reaction of the photopolymers was investigated to elucidate the complicated behavior.  相似文献   

4.
Phosphorus‐containing vinyl esters and vinyl carbamates were synthesized as new biocompatible and degradable photopolymers. Reactivity of the monomers with one, two, and three polymerizable double bonds was evaluated by photo‐differential scanning calorimetry. With respect to their potential application in the biomedical field, studies on cytotoxicity, mechanical stability, and hydrolytic erosion behavior of the poly(vinyl alcohol)‐based derivatives were performed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2916–2924, 2010  相似文献   

5.
The new photopolymers for holographic applications described herein are based on a cross-linked matrix in which the holographic grating is formed by photo-polymerization of guest monomers in an interference pattern of the recording light. Diffusion of monomer, triggered by this photo-polymerization, from the dark to the bright fringes of the interference pattern is the key parameter for creating high modulation in refractive index Δn during hologram recording. This leads to bright visual volume holograms with high diffraction efficiency. The holographic photopolymers are self-processing. After recording the hologram only (incoherent) light exposure is necessary to bleach the final product and fix the hologram. Unlike earlier photopolymers used in holography, these new materials offer the advantages of no chemical or thermal processing combined with low shrinkage and detuning. Additionally, due to good light sensitivity the formation of the holograms is fast and the film obtained after curing is highly transparent, which makes the material suitable for both, reflection and transmission holography.  相似文献   

6.
Near infrared (NIR) activable photopolymers suitable for versatile fabrication of micro-optical elements were developed. The first main objective of this article is to show that these new photopolymers can be used for microfabrication and investigate the parameters governing the microfabrication process. The impact of photonic, physico-chemical, and chemical parameters is discussed. High quality microstructures with a good control over their size and shape are demonstrated. The second main objective is to show practical examples of microlenses and waveguides implemented on single core and multiple core optical fibers, VCSELs, and glass slides are then presented. The NIR photosensitivity of this negative tone photoresists allows using the device source itself as to start the crosslinking process, which constitutes a convenient approach for micro-optics self-positioning on NIR sources and justifies the interest of such NIR photopolymer for the fabrication micro-optical elements and optical interconnects.  相似文献   

7.
从废弃高分子角度对废弃生物质的高附加值再利用进行综述,阐述了废弃生物质中天然高分子的类型以及废弃生物质中包含的大量天然高分子具有官能团丰富、可降解、生物相容、无毒无害等优异的性能,归纳了废弃生物质的传统处理方法及作为材料使用的再利用途径,介绍了废弃天然高分子用作复合材料、吸附材料、载体材料、能源材料、医用高分子材料、智能高分子材料等的研究进展,并对废弃天然高分子的资源化利用进行了展望。  相似文献   

8.
The aim of this study was to design new resin formulations for blood vessel substitutes with small inner diameter that can be 3D-printed by Additive Manufacturing (AM). Commercially available urethane oligomer acrylates as crosslinking agents (CAs) with different reactive diluents (RDs) and/or thiol chain transfer agents (CTAs) were examined. It could be shown that the properties of photopolymers of carefully selected CA/RD/CTA combinations can be varied in a wide range, also to fit with those of natural blood vessels. Moreover, these materials showed good biocompatibility in in-vitro cell culture tests with endothelial cells. A new method to assess the tear resistance of the new materials in comparison with natural blood vessels was designed and established. The tear resistance of the developed photopolymers already approaches those of natural material, although there is still need of improvement. The 3D-structuring of optimized resin system succeeded. Hence AM has proven to be an ideal tool to manufacture parts with the complex structure of natural blood vessels.  相似文献   

9.
The reaction of thiols and anhydrides to form ring opened thioester/acids is shown to be highly reversible and it is accordingly employed in the fabrication of covalent adaptable networks (CANs) that possess tunable dynamic covalent chemistry. Maleic, succinic, and phthalic anhydride derivatives were used as bifunctional reactants in systems with varied stoichiometries, catalyst, and loadings. Dynamic characteristics such as temperature-dependent stress relaxation, direct reprocessing and recycling abilities of a range of thiol–anhydride elastomers, glasses, composites and photopolymers are discussed. Depending on the catalyst strength, 100 % of externally imposed stresses were relaxed in the order of minutes to 2 hours at mild temperatures (80–120 °C). Pristine properties of the original materials were recovered following up to five cycles of a hot-press reprocessing technique (1 h/100 °C).  相似文献   

10.
研制了一种新型全息用光致聚合物材料,其成膜树脂为胺固化环氧体系,全息记录组分为光引发自由基聚合体系.用新合成的高效光敏染料DEAMC做光敏剂,通过配方调整,制备了一系列的样片,以457 nm的蓝光为记录光,632.8 nm的红光为探针光,研究了样片的衍射效率、灵敏度、折射率调制度等全息性能.结果表明,通过调整材料的配方组成、各组分的含量及样片的膜厚等因素,可以优化样片的全息性能.对样片的信噪比损失(LSNR)测试结果表明,在全息存储的曝光量范围内对样片曝光引起的图像信噪比损失仅有0.40 dB,说明样片的光学质量高,在全息存储上将具有很好的应用前景.  相似文献   

11.
A chitosan-based biocompatible self-healing hydrogel has been facilely prepared and used for bioapplications.  相似文献   

12.
The reaction of thiols and anhydrides to form ring opened thioester/acids is shown to be highly reversible and it is accordingly employed in the fabrication of covalent adaptable networks (CANs) that possess tunable dynamic covalent chemistry. Maleic, succinic, and phthalic anhydride derivatives were used as bifunctional reactants in systems with varied stoichiometries, catalyst, and loadings. Dynamic characteristics such as temperature‐dependent stress relaxation, direct reprocessing and recycling abilities of a range of thiol–anhydride elastomers, glasses, composites and photopolymers are discussed. Depending on the catalyst strength, 100 % of externally imposed stresses were relaxed in the order of minutes to 2 hours at mild temperatures (80–120 °C). Pristine properties of the original materials were recovered following up to five cycles of a hot‐press reprocessing technique (1 h/100 °C).  相似文献   

13.
At present the problem of creating materials for medical application, which possess surface thromboresistant and antiseptic properties is of the great importance. The method of creating hydrogel films, containing anticoagulants, biologically active and antiseptic substances on the surface of well-known polymers of medical purity allows to give their surface special functions and properties and to retain the good mechanical properties [1,2]. In the majority of cases, the methods which are used for the creation of such films have a limitations which impede their wide application as they do not allow to obtain surface layers, possessing different medico-biological and physic-chemical properties. The aim of our research was the electroformation of biocompatible, polyfunctional poly(vinyl alcohol) (PVA) films with immobilizied anticoagulant, enzyme and antibiotic on the surface of a composite material on the base of polysiloxane of medical purity [3,4].  相似文献   

14.
Recently investigated applications of polymeric materials for tissue engineering, regenerative medicine, implants, stents, and medical devices are described in the present review. Papers published during the last 2 years about polymeric materials used for preparation of various polymeric scaffolds, methods of fabrication of such scaffolds and their effectiveness in providing support for cell growth and development into various tissues and enhancing or mimicking an extracellular network (ECM's) have been cited. Papers describing the use of such polymeric materials for tissue engineering of cartilage and bones were cited. The exciting developments in the field of regenerative medicine, based on application of the self‐assembled biocompatible polymeric scaffolds for regeneration of tissues and organs are described in some detail. The use of the biocompatible and biodegradable collapsible polymeric stents, as well as the use of biocompatible, but not necessarily biodegradable polymeric materials for protective coatings of metallic stents and reservoirs of drugs, preventing restenosis and other post‐operative complications that may occur after insertion of a stent, have been reviewed. Clinical results pointing out the advantages of such treatments, as well as results indicating their limitations, have been cited. New formulas, for coating implants, stents, and other medical devices, have been discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The formation of networks through light‐initiated radical polymerization allows little freedom for tailored network design. The resulting inhomogeneous network architectures and brittle material behavior of such glassy‐type networks limit the commercial application of photopolymers in 3D printing, biomedicine, and microelectronics. An ester‐activated vinyl sulfonate ester (EVS) is presented for the rapid formation of tailored methacrylate‐based networks. The chain transfer step induced by EVS reduces the kinetic chain length of the photopolymer, thus shifting the gel point to higher conversion, which results in reduced shrinkage stress and higher overall conversion. The resulting, more homogeneous network is responsible for the high toughness of the material. The unique property of EVS to promote nearly retardation‐free polymerization can be attributed to the fact that after the transfer step no polymerizable double bond is formed, as is usually seen in classical chain transfer agents. Laser flash photolysis, theoretical calculations, and photoreactor studies were used to elucidate the fast chain transfer reaction and exceptional regulating ability of EVS. Final photopolymer networks exhibit improved mechanical performance making EVS an outstanding candidate for the 3D printing of tough photopolymers.  相似文献   

16.
Injectable hydrogels have been considered as promising materials for bone regeneration,but their osteoinduction and mechanical performance are yet to be improved.In this study,a novel biocompatible injectable and self-healing nano hybrid hydrogel was on-demand prepared via a fast(within 30 s) and easy gelation approach by reversible Schiff base formed between-CH=O of oxidized sodium alginate(OSA) and-NH_2 of glycol chitosan(GCS) mixed with calcium phosphate nanoparticles(CaP NPs).Its raw materials can be ready in large quantities by a simple synthesis process.The mechanical strength,degradation and swelling behavior of the hydrogel can be readily controlled by simply controlling the molar ratio of-CH=O and-NH_2.This hydrogel exhibits pH responsiveness,good degradability and biocompatibility.The hydrogel used as the matrix for mesenchymal stem cells can significantly induce the proliferation,differentiation and osteoinduction in vitro.These results showed this novel hydrogel is an ideal candidate for applications in bone tissue regeneration and drug delivery.  相似文献   

17.

Abstract  

Various analytical methods have been performed or adapted for the detection of small amounts of amino groups on solid surfaces. As well as the quantification of available amino groups, area-wide coatings should be detectable for applications such as biocompatible coatings of medically relevant materials. In this regard, photometric and fluorometric methods have been used and an enzymatic assay developed, all of which are compared herein.  相似文献   

18.
A new dry photoetching process that dose not required development step had been developed, utilizing the development-free vapor photoetching effect of cinnamate-type photopolymers.1–3 In contrast to obtaining positive patterns with cinnamate-type photopolymers, this process with azide-type photopolymers, which consist of axide crosslinking agent and polymers, gives negative patterns. Some preliminary studies on the development-free vapor photoetching effect of azide-type photopolymers were made. The results indicate that the polymers in this process only play the role of forming a film on the surface of silicon dioxide; and the crosslinking agent is the most important factor, which leads the difference of etching rate between the exposed and unexposed areas.  相似文献   

19.
With the tremendous development of biosensors, there is a strong need in new biocompatible materials avoiding possible denaturing of biological species, which can be easily processed with already existing technologies. The scope of this study was to develop new hydrogels which could be nanostructured by common lithographic methods. Therefore, new methacrylate hydrogels are described, which include functionalized monomers bearing either neutral groups, such as saccharidic moieties, anionic, or cationic groups. The gels have been synthesized by redox or photochemical-initiated radical polymerization. Their porosity has been characterized by thermoporometry, AFM, and electronic microscopy. The kinetics of the photocross-linking has been analyzed by piezorheometry on some of the materials and has been shown to be compatible with technological process time range. Although the obtained hydrogels are soft, their nanostructuration into 500-nm patterns could be performed by nanoimprint photolithography process, and these patterns were observed to be stable for several months.  相似文献   

20.
Materials having long afterglow are highly sought after for various applications such as light‐emitting diodes, security signs and bioimaging. Herein, we report a simple, low‐cost synthesis of a purely organic room‐temperature phosphorescent nanomaterial with a pebble‐like structure by heating urea, a biocompatible and easily available precursor, at 200 °C with a high phosphorescence lifetime of 1.0365 s and a visible afterglow for up to 10 s. This urea derived phosphorescent nanocomposite (UPNC) can be mixed with commercially available acrylic paint base and common gum, which can be readily used as a phosphorescent pigment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号