首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Existing live video streaming systems can be classified as server (cloud) based or as peer-to-peer (P2P). The client–server approach promises stability and (Quality of Service) QoS by incurring expensive bandwidth provision cost on the server. On the other hand, P2P architecture is scalable with low bandwidth and maintenance cost. Here we propose a cloud assisted P2P live streaming architecture which is scalable and stable. In order to achieve this we have developed: (i) a scalable gossip protocol that monitors dynamically the total available bandwidth resources of the participating peers, (ii) a control strategy that dynamically allocates the bandwidth that is required.The first step towards this direction is to create a theoretical model that captures the dynamic relationship between the total bandwidth surplus/deficit and peers’ bandwidth utilization in order to be able to apply a control theoretical approach. Moreover, we quantify the impact of monitoring inaccuracies and peers’ dynamic bandwidth changes and we calculate analytically, as a function of them, the minimum amount of bandwidth overprovision that ensures the undisturbed distribution of the stream. System is evaluated through a detailed simulator of a complete P2P live streaming system and testified the uninterrupted and complete stream delivery even in very adverse bandwidth changes.  相似文献   

2.
We are witnessing the unprecedented popularity of User-Generated-Content (UGC) on the Internet. While YouTube hosts pre-recorded video clips, in near future, we expect to see the emergence of User-Generated Live Video, for which any user can create its own temporary live video channel from a webcam or a hand-held wireless device. Hosting a large number of UG live channels on commercial servers can be very expensive. Server-based solutions also involve various economic, copyright and content control issues between users and the companies hosting their content. In this paper, leveraging on the recent success of P2P video streaming, we study the strategies for end users to directly broadcast their own live channels to a large number of audiences without resorting to any server support. The key challenge is that end users are normally bandwidth constrained and can barely send out one complete video stream to the rest of the world. Existing P2P streaming solutions cannot maintain a high level of user Quality-of-Experience (QoE) with such a highly constrained video source. We propose a novel Layered P2P Streaming (LPS) architecture, to address this challenge. LPS introduces playback delay differentiation and constructs virtual servers out of peers to boost end users’ capability of driving large-scale video streaming. Through detailed packet-level simulations and PlanetLab experiments, we show that LPS enables a source with upload bandwidth slightly higher than the video streaming rate to stream video to tens of thousands of peers with premium quality of experience.  相似文献   

3.
目前的P2P流媒体系统具有自组织、容错性和匿名性等优点,但是在健壮性和对高视频播放率的有效支持方面还存在一些问题。本文提出了一种层次化P2P流媒体系统(HPSS)来支持高视频播放率,节点根据带宽和延迟分组聚类,在系统中形成多级层次结构,从视频源服务器来取得视频数据。通过积极地平衡聚类中的上传能力,既能够有效地解决P2P系统中支持高视频播放率的问题,提供接近一个P2P系统能够达到的最大流媒体速率,同时保证系统具有良好的健壮性,在聚类的头节点失效的情况下,不降低整个系统的流媒体速率。最后通过仿真实验证明了HPSS的上述优点。  相似文献   

4.
李彦  陈卓 《计算机应用》2012,32(4):938-942
现有用户生产内容(UGC)类视频系统通常采用C/S架构设计,导致了视频服务器极大的带宽压力。提出一种采用对等网(P2P)的在线短视频查找策略——FastSearch,其目的是利用视频资源之间的关联关系进行视频资源定位,以显著提高点播节点之间的视频分享效率并降低对视频服务器的带宽需求。实验表明FastSearch具备良好的视频数据源节点查找能力,集成了该查找策略的短视频系统能有效减少对视频服务器的带宽消耗。  相似文献   

5.
Peer-to-Peer (P2P) technology has become an attractive approach for enabling large-scale video streaming applications, but the factor of users’ subjective preferences is not paid enough attention in such networks. As users have various demand on video qualities, we can provide them with video streams at different resolutions without impairing their satisfaction. The adaptive streaming rate technique is a promising method. However, in providing adaptive streaming rate services, P2P live streaming design faces the following challenge: how to provide all users with uninterrupted video with their desired qualities in case that their demand dynamically changes? To shed more light on this problem, we first derive a model and formulate the problem as a resource demand vs supply problem. Then we present a framework to address the challenge via efficient bandwidth allocation and group cooperation. Through comprehensive simulations, we evaluate the effectiveness of the proposed framework, and conclude that it effectively helps existing solutions, such as Partial Participation Scheme (PPS), achieve better performance.  相似文献   

6.
P2P based live streaming has been gaining popularity. The new generation P2P live streaming systems not only attract a large number of viewers, but also support better video quality by streaming the content at higher bit-rate. In this paper, we propose a novel P2P streaming framework, called Hierarchically Clustered P2P Video Streaming, or HCPS, that can support the streaming rate approaching the optimal upper bound while accommodating large viewer population. The scalability comes with the hierarchical overlay architecture by grouping peers into clusters and forming a hierarchy among them. Peers are assigned to appropriate cluster so as to balance the bandwidth resources across clusters and maximize the supportable streaming rate. Furthermore, individual peers perform distributed queue-based scheduling algorithms to determine how to retrieve data chunks from source and neighboring peers, and how to utilize its uplink bandwidth to serve data chunks to other peers. We show that queue-based scheduling algorithms allow to fully utilize peers’ uplink bandwidths, and HCPS supports the streaming rate close to the optimum in practical network environment. The prototype of HCPS is implemented and various design issues/tradeoffs are investigated. Experiments over the PlanetLab further demonstrate the effectiveness of HCPS design.  相似文献   

7.
A successful P2P live streaming system must achieve high uploading bandwidth utilization, fast stream distribution, uniform bandwidth distribution among participating peers, flexibility and adaptation to the underlying network conditions and peer behavior. This paper proposes a novel architecture that meets these requirements. By the use of distributed optimization algorithms we propose a dynamically reconfigurable overlay architecture that organizes its peers according to network locality information and heterogeneous uploading capabilities of them. The benefits of our optimized overlay are fully exploited by our proposed scheduler, which guarantees the complete and fast distribution of the stream. The evaluation of our system under a series of scenarios that take into account the all requirements above reveals the advantages of our proposed system.  相似文献   

8.
Layered video streaming in peer-to-peer (P2P) networks has drawn great interest, since it can not only accommodate large numbers of users, but also handle peer heterogeneity. However, there’s still a lack of comprehensive studies on chunk scheduling for the smooth playout of layered streams in P2P networks. In these situations, a playout smoothing mechanism can be used to ensure the uniform delivery of the layered stream. This can be achieved by reducing the quality changes that the stream undergoes when adapting to changing network conditions. This paper complements previous efforts in throughput maximization and delay minimization for P2P streaming by considering the consequences of playout smoothing on the scheduling mechanisms for stream layer acquisition. The two main problems to be considered when designing a playout smoothing mechanism for P2P streaming are the fluctuation in available bandwidth between peers and the unreliability of user-contributed resources—particularly peer churn. Since the consideration of these two factors in the selection and scheduling of stream layers is crucial to maintain smooth stream playout, the main objective of our smoothing mechanism becomes the determination of how many layers to request from which peers, and in which order. In this work, we propose a playout smoothing mechanism for layered P2P streaming. The proposed mechanism relies on a novel scheduling algorithm that enables each peer to select appropriate stream layers, along with appropriate peers to provide them. In addition to playout smoothing, the presented mechanism also makes efficient use of network resources and provides high system throughput. An evaluation of the performance of the mechanism demonstrates that the proposed mechanism provides a significant improvement in the received video quality in terms of lowering the number of layer changes and useless chunks while improving bandwidth utilization.  相似文献   

9.
In this paper we propose an adaptive P2P video streaming framework to address the challenges due to bandwidth heterogeneity and peer churn on the Internet. This adaptive streaming framework consists of two major components, source rate adaptation and adaptive overlay topology formation, to maximize the video quality and fully utilize the overall peer upload capacity. In the source rate adaptation, the video server adapts the video source rate automatically based on the local measurement of peers’ download rates, so that the P2P network is not overloaded beyond its bandwidth capacity and peers are able to achieve smooth video playback. To combat bandwidth heterogeneity, we propose to construct a desirable link-level homogeneous overlay topology using a Markov chain Monte Carlo method, so that peers achieve an equal per-connection upload/download bandwidth. In this link-level homogeneous network, video flows do not encounter any bottlenecks along the delivery paths, and peers achieve high download rates to ensure smooth video playback. We also design a fully distributed algorithm to implement the dual mechanisms of the adaptive topology formation and the source rate maximization. To evaluate the performance of our streaming framework, we conduct both mathematical analysis and extensive simulations. The simulation results confirm our analysis and show that the proposed distributed algorithm is able to maximize the video playback quality with fast convergence.  相似文献   

10.
The P2P swarm technologies have been shown to be very efficient for medium scale content distribution systems in the last few years, such as the file sharing and video-on-demand (VOD) applications. However it is still an open topic about how to deploy the P2P paradigm for the real time video broadcasting (RTVB) applications. The P2P RTVB application is different from the cache based P2P system because it has more stringent restrictions for startup time and packet loss ratio. In this paper, an adaptive media broadcasting P2P framework named SmartPeerCast which employs the media transrating service to control the quality of service (QoS), is proposed. SmartPeerCast achieves a network awareness, codec awareness, and high performance RTVB service with four key designs: (1) It groups the newly joined peers into different quality clusters by their uploading capability. This clustering mechanism avoids the bandwidth bottleneck between the heterogeneous peers of the overall P2P overlay by only forwarding the same quality stream over the peers in the same cluster. (2) The streaming quality is adjusted adaptively between the sending and the receiving peers by a Smart QoS algorithm to compensate for the network jitters to reduce the receiving peer’s playback jitter. (3) The receiving peer monitors the data forwarding QoS of the sending peer to select the best suitable parent node dynamically. The SmartPeerCast uses this Smart QoS framework to implement an incentive mechanism to award the peers with high uploading contributions by migrating them to a higher quality cluster. (4) A transrating engine is used at the leaf nodes of the high quality cluster to forward the stream with suitable bits rate to the nodes of the low quality cluster; this transrating service not only can fully utilize the uploading bandwidth of the peers in the higher quality cluster but also avoids the bandwidth bottleneck of stream forwarding between the heterogeneous peers. Our experiment results and the real deployment show that SmartPeerCast can eliminate the bandwidth bottleneck and content bottleneck between the heterogeneous peers with a smaller startup time and packet loss and it is a high performance and medium scale P2P RTVB framework.  相似文献   

11.
Video-on-demand (VoD) streaming has recently become a popular service on the Internet, with several companies offering videos to a global audience. However, traditional client/server based VoD streaming systems can be very bandwidth intensive and expensive to maintain, especially for high quality video content. To improve the scalability these systems, the use of peer-to-peer (P2P) networking has been proposed, but despite the efficiency of applications such as BitTorrent for downloading of large files, it is not simple to use P2P techniques for streaming. Problems such as firewalls and freeloaders reduce the efficiency of both types of P2P systems, but for real-time services such as streaming, the result can be reduced playback quality. Other issues include the traffic load imposed on ISPs by P2P networks, which can motivate ISPs to interfere with the P2P traffic. Finally, protecting against malicious modification of content can increase overhead, response times, and startup delays.We consider these issues to be fundamental to the problem of P2P based VoD, but despite the large amount of research that has been done in this field, these issues have largely been ignored. To address this, we present an evaluation of the Streaming P2P Protocol (SPP) architecture. By studying the problem as a whole we have found a simple and comprehensive solution that addresses all the four issues listed above. To show that the system is not only scalable, but also that it can be implemented efficiently, we have used both simulations and experiments on PlanetLab for evaluation. The results show that the combination of cache nodes and use of end-user resources found in the SPP architecture can give a low load on servers and ISPs, even when firewalls are taken into consideration. Furthermore, we observed low startup delays and few playback errors during the PlanetLab experiments. The scalable and low-cost distribution of content possible with the SPP architecture should be suitable for both large-scale commercial distributors and users of community networks with limited resources.  相似文献   

12.
During recent years, the Internet has witnessed rapid advancement in peer-to-peer (P2P) media streaming. In these applications, an important issue has been the block scheduling problem, which deals with how each node requests the media data blocks from its neighbors. In most streaming systems, peers are likely to have heterogeneous upload/download bandwidths, leading to the fact that different peers probably perceive different streaming quality. Layered (or scalable) streaming in P2P networks has recently been proposed to address the heterogeneity of the network environment. In this paper, we propose a novel block scheduling scheme that is aimed to address the P2P layered video streaming. We define a soft priority function for each block to be requested by a node in accordance with the block’s significance for video playback. The priority function is unique in that it strikes good balance between different factors, which makes the priority of a block well represent the relative importance of the block over a wide variation of block size between different layers. The block scheduling problem is then transformed to an optimization problem that maximizes the priority sum of the delivered video blocks. We develop both centralized and distributed scheduling algorithms for the problem. Simulation of two popular scalability types has been conducted to evaluate the performance of the algorithms. The simulation results show that the proposed algorithm is effective in terms of bandwidth utilization and video quality.  相似文献   

13.
The number of live multimedia streaming applications is increasing, explaining the use of many overlay network topologies. Application-layer multicast (ALM) that it is a feasible alternative to multimedia stream has attracted considerable attention. However, a serious problem of ALM is that the multicast tree may be fragile, and peer failure causes tree partitions. This work presents a novel Hierarchical Ring Tree (HRT) architecture for Peer-to-Peer (P2P) live multimedia streaming. The proposed architecture combines ring-based and tree-based structures in a robust, scalable, reliable and resilient structure that can be used practically as an ALM topology. When peers enter or leave the system, the topology can be recovered rapidly such that live multimedia stream can be delivered smoothly with a low latency. The proposed HRT topology is maintained efficiently without splitting or merging trees. The performance of the proposed architecture and algorithms is evaluated experimentally. Experimental results indicate that the proposed topology can be used in a high-churn P2P network with a small delay. Simulation and experiment results reveal that the proposed architecture has a lower overhead than the ZIGZAG approach when handling peers’ joining or leaving, exhibits faster recovery, better quality-of-service during streaming, and a more robust topology, even with an extremely high number of peers joining/leaving.  相似文献   

14.
陈卓  冯钢  陆毅 《计算机科学》2012,39(5):69-74
基于Peer-to-Peer(P2P)技术的流媒体应用具有部署效率高及可扩展性好等突出优势。而采用分层视频编码技术的P2P流媒体系统把原视频流分解为多个视频层数据进行分发,让节点能够选择与自己带宽资源相匹配的视频质量,使其很好地适应节点的异构性。但是各分层视频数据传输的路径存在较大差异,使重叠网构建策略面临更大的挑战。因此定义了基于分层视频编码技术环境下的P2P流媒体重叠网络构建问题,并证明该问题是一个NP难问题。提出了一种构建重叠网的集中启发式算法,同时还提出了一种基于视频组(Streaming Group)的分布式重叠网络构建策略。通过大规模网络仿真实验验证了基于该分布式重叠网构建策略的分层流媒体系统具备低服务器带宽占用、高数据获取率等优点。  相似文献   

15.
In large-scale peer-to-peer (P2P) video-on-demand (VoD) streaming applications, a fundamental challenge is to quickly locate new supplying peers whenever a VCR command is issued, in order to achieve smooth viewing experiences. For many existing commercial systems which use tracker servers for neighbor discovery, the increasing scale of P2P VoD systems has overloaded the dedicated servers to the point where they cannot accurately identify the suppliers with the desired content and bandwidth. To avoid overloading the servers and achieve instant neighbor discovery over the self-organizing P2P overlay, we design a novel method of organizing peers watching a video. The method features a light-weight indexing architecture to support efficient streaming and fast neighbor discovery at the same time. InstantLeap separates the neighbors at each peer into a streaming neighbor list and a shortcut neighbor list, for streaming and neighbor discovery respectively, which are maintained loosely but effectively based on random neighbor list exchanges. Our analysis shows that InstantLeap achieves an O(1) neighbor discovery efficiency upon any playback “leap” across the media stream in streaming overlays of any size, and low messaging costs for overlay maintenance upon peer join, departure, and VCR operations. We also verify our design with large-scale simulation studies of dynamic P2P VoD systems based on real-world settings.  相似文献   

16.
Link rate allocation is very important for supporting high video playback rate in Peer-to-Peer video streaming. Although many studies can be found on resource allocation in P2P streaming in wired networks, very few studies have studied the problem in wireless networks, especially in Wireless multi-hop Mesh Networks (WMNs), which is still challenging. To maximize the users’ satisfaction of P2P streaming in WMNs, this paper focuses on link rate allocation problem and proposes a fully distributed algorithm to efficiently utilize the upload and download bandwidth of wireless mesh nodes. We first build an efficient P2P streaming system based on the experimental results from real deployment of our wireless mesh testbed. Then we design an efficient distributed algorithm based on the solution to a linear optimization model, which optimizes towards a user-density-related objective to decide the best streaming rates among peers. Our scheme is resilient to network dynamics that is characteristic in wireless multi-hop peer-to-peer networks. The simulation experiments demonstrate the significant performance enhancement by using the proposed rate allocation algorithm in WMNs.  相似文献   

17.
There are two major building blocks in operating a peer-to-peer (P2P) video-on-demand (VOD) network: supplier discovery and content delivery. Supplier discovery concerns the discovery of peer nodes in the network that can provide the streaming data blocks needed for playing by a local node. The more suppliers one can discover, the higher the chance of locating quality suppliers for delivering contents smoothly to ensure uninterrupted playback. The key to supplier discovery is to establish and track the supply-demand relationship among the peers. For P2P VOD, the supply-demand relationship is determined by the buffer contents of the peers. Unfortunately, the buffer contents change rapidly as peers play the video, especially under VCR operations. The challenge is to track all the dynamic relationships in an efficient way. In this paper, we propose an Overlapping Relation Network (ORN). The idea is to track the dynamic supply-demand relationship by tracking the overlapping of peers’ buffer contents. As long as peers play the video at the same rate, the overlapping relationship is stable and can be used for low-cost supplier discovery. Extensive analyses and simulation experiments show that in most cases the ORN can discover more than 96% of the suppliers in the network, resulting in a streaming continuity that is superior to that of other approaches.  相似文献   

18.
The Proactive network Provider Participation for the P2P (P4P) architecture deploys central servers, which perceives network status and provides peering suggestions to P2P systems in order to achieve better network resource utilization while supporting best possible application performance. However, P4P alone may not be able to make appropriate peering suggestions for live multimedia streaming since it does not include mechanisms to reflect some of the parameters that are important to the QoS of live multimedia streaming such as upload bandwidth and stability of a peer as a stream deliverer. Furthermore, peer synchronization and parent replacement in the middle of a session, which are critical issues to the QoS of live multimedia streaming, are also left as the matters to be dealt with by the P2P systems alone. Most of the existing data-driven P2P systems leverage periodic information exchanges among neighboring peers in order to cope with these problems, which may incur long delay and high control overhead. In this paper, we proposed P4P-integrated data-driven P2P system for live multimedia streaming service. The proposed system includes not only the peering suggestion mechanism appropriate for live multimedia streaming but also the peer synchronization and parent replacement mechanisms, which exploit the centralized P4P framework and do not require periodic control information exchanges. We implemented the system in NS-2 simulator and compared its performance to the P4P and existing data-driven P2P systems. The results from experiments show that the proposed system enhances QoS compared to the existing data-driven P2P systems while maintaining the same level of network efficiency of the original P4P.  相似文献   

19.
In current multi-channel P2P live video systems, there are several fundamental performance problems including exceedingly-large channel switching delays, long playback lags, and poor performance for less popular channels. These performance problems primarily stem from two intrinsic characteristics of multi-channel P2P video systems: channel churn and channel-resource imbalance. In this paper, we propose a radically different cross-channel P2P streaming framework, called View-Upload Decoupling (VUD). VUD strictly decouples peer downloading from uploading, bringing stability to multi-channel systems and enabling cross-channel resource sharing. We propose a set of peer assignment and bandwidth allocation algorithms to properly provision bandwidth among channels, and introduce substream-swarming to reduce the bandwidth overhead. We evaluate the performance of VUD via extensive simulations as well with a PlanetLab implementation. Our simulation and PlanetLab results show that VUD is resilient to channel churn, and achieves lower switching delay and better streaming quality. In particular, the streaming quality of small channels is greatly improved.  相似文献   

20.
In this paper, we consider a hybrid P2P video on-demand architecture that utilizes both the server and the peer resources for efficient transmission of popular videos. In our system architecture, each peer dedicates some cache space to store a particular segment of a video file as well as some of its upload bandwidth to serve the cached segment to other peers. Peers join the system and issue a streaming request to a control server. Control server directs the peers to streaming servers or to other peers who have the desired video segments. Control server also decides which peer should cache which video segment. Our main contribution in this paper is to determine the proper caching strategies at peers such that we minimize the average load on the streaming servers.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号