首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three circuit techniques for an 8.1-ns column-access 1.6-Gb/s/pin 512-Mb DDR3 SDRAM using 90-nm dual-gate CMOS technology were developed. First, an 8:4 multiplexed data-transfer scheme, which operates in a quasi-4-bit prefetch mode, achieves a 3.17-ns reduction in column-access time, i.e., from 11.3 to 8.13 ns. Second, a dual-clock latency counter reduces standby power by 22% and cycle time from 1.7 to 1.2 ns. Third, a multiple-ODT-merged output buffer enables selection of five effective-resistance values Rtt (20, 30, 40, 60, and 120 Omega) without increasing I/O capacitance. Based on these techniques, 1.6-Gb/s/pin operation with a 1.36-V power supply and a column latency of 7 was accomplished  相似文献   

2.
A 1-Gb/s/pin 512-Mb DDRII SDRAM has been developed using a digital delay-locked loop (DLL) and a slew-rate-controlled output buffer. The digital DLL has a frequency divider for DLL input, performs at an operating frequency of up to 500 MHz at 1.6 V, and provides internal clocking with 50% duty-cycle correction. The DLL has a current-mirror-type interpolator, which enables a resolution as high as 14 ps, needs no standby current, and can operate at voltages as low as 0.8 V. The slew-rate impedance-controlled output buffer circuit reduces the output skew from 107 to 10 ps. This SDRAM was tested using a 0.13-/spl mu/m 126.5-mm/sup 2/ 512-Mb chip.  相似文献   

3.
This paper describes a 144-Mb DRAM that operates at a random cycle of 5.6 ns and is capable of producing data rates of 1.4 Gb/s/pin. The 121-mm/sup 2/ die is fabricated in a 0.13-/spl mu/m logic-based process with embedded DRAM. The cycle time is achieved using an early-write sensing technique that eliminates most of the timing overhead associated with the write cycle. Dynamic-precharge decoding in the subarray decode path is implemented to improve the access time. An improved data-formatting circuit is used to arrange the exit order of the eight-word burst. These circuit techniques produce latencies of 5.0 ns. The DRAM uses a DDR3-SRAM interface and is function and package compatible with industry-standard DDR3 SRAMs. Highlights of the DDR3 interface include the use of active termination circuitry on all inputs. The active termination improves the data-eye window and improves data capturing with minimum data setup and hold.  相似文献   

4.
A 1.2-V 72-Mb double data rate 3 (DDR3) SRAM achieves a data rate of 1.5 Gb/s using dynamic self-resetting circuits. Single-ended main data lines halve the data line precharging power dissipation and the number of data lines. Clocks phase shifted by 0/spl deg/, 90/spl deg/, and 270/spl deg/ are generated through the proposed clock adjustment circuits. The latter circuits make input data sampled with an optimized setup/hold window. On-chip input termination with a linearity error of /spl plusmn/4.1% is developed to improve signal integrity at higher data rates. A 1.2-V 1.5-Gb/s 72-Mb DDR3 SRAM is fabricated in a 0.10-/spl mu/m CMOS process with five metals. The cell size and the chip size are 0.845 /spl mu/m/sup 2/ and 151.1 mm/sup 2/, respectively.  相似文献   

5.
A double data rate (DDR) at 333 Mb/s/pin is achieved for a 2.5-V, 1-Gb synchronous DRAM in a 0.14-μm CMOS process. The large density of integration and severe device fluctuation present challenges in dealing with the on-chip skews, packaging, and processing technology. Circuit techniques and schemes of outer DQ and inner control (ODIC) chip with a non-ODIC package, cycle-time-adaptive wave pipelining, and variable-stage analog delay-locked loop with the three-input phase detector can provide precise skew controls and increased tolerance to processing variations. DDR as a viable high-speed and low-voltage DRAM I/O interface is demonstrated  相似文献   

6.
A 390-mm2, 16-bank, 1-Gb, double-data-rate (DDR) synchronous dynamic random access memory (SDRAM) has been fabricated in fully planarized 0.175-μm, 8F2 trench cell technology. The 1-Gb SDRAM employs a hybrid bitline architecture with 512 cells/local-bitline (LBL). Four LBL pairs are connected through multiplexers to each sense amplifier (SA). Two of the LBL pairs are coupled to the SA by wiring over two other LBL pairs using hierarchical bitlines. This results in a reduction of the number of the SA's to 1/4, reducing the chip size by 6%. A hierarchical column-select-line scheme is incorporated with a hierarchical dataline (MDQ) architecture. This makes 16-bank organization possible while sharing hierarchical column decoders and second sense amplifiers. A hierarchical 8-b prefetch scheme employs four MDQ's for each read-write drive (RWD) and two RWD's for each DQ. This reduces the frequencies of the MDQ's and the RWD's to 1/8 and 1/2, respectively. A 1-V swing signaling on the RWD is used to reduce the burst current by 18 mA. The 1-V swing signaling is successfully converted to 2.1 V with self-timed first-in, first-out circuitry. The hardware data demonstrate 400-Mb/s/pin operation with a 16-mm TSOP-II package. Seamless burst operation at various frequencies has also been confirmed. These features result in a 1.6-Gb/s data rate for ×32 200-MHz DDR operation with a cell/chip area efficiency of 67.5%  相似文献   

7.
A 7-ns 140-mW 1-Mb CMOS SRAM was developed to provide fast access and low power dissipation by using high-speed circuits for a 3-V power supply: a current-sense amplifier and pre-output buffer. The current-sense amplifier shows three times the gain of a conventional voltage-sense amplifier and saves 60% of power dissipation while maintaining a very short sensing delay. The pre-output buffer reduces output delays by 0.5 ns to 0.75 ns. The 6.6-μm2 high-density memory cell uses a parallel transistor layout and phase-shifting photolithography. The critical charge that brings about soft error in a memory cell can be drastically increased by adjusting the resistances of poly-PMOS gate electrodes. This can be done without increasing process complexity or memory cell area. The 1-Mb SRAM was fabricated using 0.3-μm CMOS quadrupole-poly and double-metal technology. The chip measures 3.96 mm×7.4 mm (29 mm2)  相似文献   

8.
This paper describes an all-digital delay-locked loop (DLL) architecture for over 667 Mb/s operating double-data-rate (DDR) type SDRAMs, which suppresses skews and jitters. Two novel replica adjusting techniques are introduced, in which timing skews caused by the clock input and data output circuits are reduced by a hierarchical phase comparing architecture and a replica check method with slow tester. Further, an improved phase interpolating method suppresses jitters caused by a boundary of the fine and coarse delays. A 512-Mb test device is fabricated using a 0.13-/spl mu/m DRAM process technology, in which skew and jitter suppressed 667-Mb/s (333-MHz) DDR operation has been verified.  相似文献   

9.
A 4-Mb mask ROM in a 256-Kb×16 organization is described. It is fabricated with a 1.0-μm CMOS process, using single polysilicon, two levels of metal, and 3.0×4.4 μm2 X-cells. Unlike conventional ROM's, it implements a DRAM type RAS/CAS control scheme. A RAS access time of 60 ns is measured. For a fast data access, the chip has a consecutive address read mode in which the system needs to supply only a first address and subsequent addresses are generated in the ROM chip at every CAS clock. A 30-ns cycle time is demonstrated in this mode. 16-b data pins are also used for RAS/CAS multiplexed address inputs. Because of this three way pin multiplexing, the 7.5×10.5 mm2 chip needs only 28 pins for its 400-mil SOJ package  相似文献   

10.
This paper describes an 833-MHz 18-Mb CMOS SRAM with a 1.67-Gb/s/pin data rate. Issues that had to be overcome from previous-generation SRAMs to meet the performance goals are addressed. The SRAM has been successfully fabricated using a 0.18-μm CMOS process with copper interconnects. It operates in two user-selectable double-data-rate modes (DDR and DDR2) and consumes 1.5 W of power at 833 MHz. In addition to the performance benefits resulting from this 0.18-μm copper technology, architecture improvements, a data-to-echo-clock tracking system, and data symmetric output drivers made possible the high frequency of operation  相似文献   

11.
This paper presents, for the first time, a 4-Mb ferroelectric random access memory, which has been designed and fabricated with 0.6-μm ferroelectric storage cell integrated CMOS technology. In order to achieve a stable cell operation, novel design techniques robust to unstable cell capacitors are proposed: (1) double-pulsed plate read/write-back scheme; (2) complementary data preset reference circuitry; (3) relaxation/fatigue/imprint-free reference voltage generator; (4) open bitline cell array; (5) unintentional power-off data protection scheme. Additionally, to improve cell array layout efficiency a selectively driven cell plate scheme has been devised. The prototype chip incorporating these circuit schemes shows 75 ns access time and 21-mA active current at 3.3 V, 25°C, 110-ns minimum cycle. The die size is 116 mm2 using 9 μm2, one-transistor/one-capacitor-based memory cell, twin-well, single-poly, single-tungsten, and double-Al process technology  相似文献   

12.
A 16-ns 1-Mb CMOS EPROM has been developed utilizing high-speed circuit technology and a double-metal process. In order to achieve the fast access time, a differential sensing scheme with address transition detection (ATD) is used. A double-word-line structure is used to reduce word-line delay. High noise immunity is obtained by a bit-line bias circuit and data-latch circuit. Sufficient threshold voltage shift (indispensable for fast access time) is guaranteed by a threshold monitoring program (TMP) scheme. The array is organized as 64 K×16 b, which is suitable for 32-b high-performance microprocessors. The active power is 425 mW, the programming time is 100 μs, and the chip size is 4.94×15.64 mm2  相似文献   

13.
This paper demonstrates the first 8-Mb chain ferroelectric RAM (chain FeRAM) with 0,25-μm 2-metal CMOS technology. A small die of 76 mm2 and a high average cell/chip area efficiency of 57.4 % have been realized by introducing not only chain architecture but also four new techniques: 1) a one-pitch shift cell realizes small cell size of 5.2 μm2; 2) a new hierarchical wordline architecture reduces row-decoder and plate-driver areas without an extra metal layer; 3) a small-area dummy cell scheme reduces dummy capacitor size to 1/3 of the conventional one; and 4) a new array activation scheme reduces dataline and second amplifier areas. As a result, the chain architecture with these new techniques reduces die size to 65% of that of the conventional FeRAM. Moreover a ferroelectric capacitor overdrive scheme enables sufficient polarization switching, without overbias memory cell array. This scheme lowers the minimum operation voltage by 0.23 V, and enables 2.5-V Vdd operation. Thanks to fast cell plateline drive of chain architecture, the 8-Mb chain FeRAM has achieved the fastest random access time, 40 ns, and read/write cycle time, 70 ns, at 3.0 V so far reported  相似文献   

14.
A 256-Mb SDRAM (245.7 mm2) has been developed using (1) a high cell occupation ratio (60.2%) array design for chip size reduction and a high yield, (2) a prefetched pipeline scheme (PPS) using a first-in first-out (FIFO) buffer with parallel serial converter for 250-MHz clock frequency operation, and (3) a synchronous mirror delay (SMD) circuit for 2.5-ns clock access and low standby current  相似文献   

15.
The feasibility of realizing an emitter-coupled-logic (ECL) interface 4-Mb dynamic RAM (DRAM) with an access time under 10 ns using 0.3-μm technology is explored, and a deep submicrometer BiCMOS VLSI using this technology is proposed. Five aspects of such a DRAM are covered. They are the internal power supply voltage scheme using on-chip voltage limiters, an ECL DRAM address buffer with a reset function and level converter, a current source for address buffers compensated for device parameter fluctuation, an overdrive rewrite amplifier for realizing a fast cycle time, and double-stage current sensing for the main amplifier and output buffer. Using these circuit techniques, an access time of 7.8 ns is expected with a supply current of 198 mA at a 16-ns cycle time  相似文献   

16.
An 18-Mbit CMOS pipeline-burst cache SRAM achieves a 12.3-Gbyte/s data transfer rate with 1.54-Gbit/s/pin I/O's. The SRAM is fabricated on a 0.18-μm CMOS technology. The 14.3×14.6-mm2 SRAM chip uses a 5.59-μm2, six-transistor cell. Circuit techniques used for achieving high bandwidth include fully self-timed array architecture, segmented hierarchical sensing with separated global read/write bitlines in different metal layers, a high-speed data-capture technique, a reduced-swing output buffer, and a high-sensitivity, high-bandwidth input buffer  相似文献   

17.
A 2.5-V 288-Mb packet-based DRAM with 32 banks and 18-DQ organization architecture achieving a peak bandwidth of 2.0-GB/s at V DD=2.25 V and T=100°C has been developed using (1) an area- and performance-efficient chip architecture with a mixture of high-speed interface circuits with DRAM peripheral circuits to increase cell efficiency; (2) a multilevel controlled bitline equalizing scheme and a distributed sense amplifier driving scheme to enhance DRAM core timing margin while increasing the number of cells per wordline for cell efficiency over the previous subwordline driving scheme; (3) a flexible column redundancy scheme with multiple fuse boxes instead of excessive spare memory cell arrays for 143 internal I/O architecture; and (4) optimized I/O circuits and pin parasitic design including pad and package to maximize the operating frequency  相似文献   

18.
The authors describe a 14-ns 1-Mb CMOS SRAM (static random-access memory) with both 1M word×1-b and 256 K word×4-b organizations. The desired organization is selected by forcing the state of an external pin. The fast access time is achieved by the use of a shorter divided-word-line (DWL) structure, a highly sensitive sense amplifier, a gate-controlled data-bus driver, and a dual-level precharging technique. The 0.7-μm double-aluminum and triple-polysilicon process technology with trench isolation offers a memory cell size of 41.6 μm2 and a chip size of 86.6 mm 2. The variable bit-organization function reduces the testing time while keeping the measurement accuracy of the access times  相似文献   

19.
A battery-operated 16-Mb CMOS DRAM with address multiplexing has been developed by using an existing 0.5-μm CMOS technology. It can access data in 36 ns when powered from a 1.8-V battery-source, and 20 ns at 3.3 V. However, this device requires a mere 57 mA of operating current for an 80-ns cycle time and only 5 μA of standby current at 3.3 V. To achieve both high-speed and low-power operation, the following four circuit techniques have been developed: 1) a parallel column access redundancy (PCAR) scheme coupled with a current sensing address comparator (CSAC), 2) an N&PMOS cross-coupled read-bus-amplifier (NPCA), 3) a gate isolated sense amplifier (GISA) with low VT, and 4) a layout that minimizes the length of the signal path by employing the lead on chip (LOC) assembly technique  相似文献   

20.
This paper describes three circuit technologies indispensable for high-bandwidth multibank DRAM's. (1) A clock generator based on a bidirectional delay (BDD) eliminates the output skew. The BDD measures the cycle time as the quantity charged or discharged of an analog quantity, and replicates it in the next cycle. This achieves a 0.18-mm 2, two-cycle-lock clock generator operating from 25 to 167 MHz with a 30-ps resolution. (2) A quad-coupled receiver eliminates the internal skew caused by the difference between a rise input and a fall input by 40%. (3) An interbank shared redundancy scheme (ISR) with a variable unit redundancy (VUR) efficiently increases yield in multibank DRAM's. The ISR allows redundancy match circuits to be shared with two or more banks. The VUR allows the number of units replaced to be variable. These circuit technologies achieved a 250-Mb/s/pin, 8-bank, 1-Gb double-data-rate synchronous DRAM  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号