首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
钱红华  鲍亚明 《辽宁化工》2009,38(11):805-806,824
从设计方案的确定、总体结构的设计以及关键技术的运用等几个方面详细介绍了大型立式低温液体储罐的设计和制造过程。该250 m3容器在-196℃的低温下工作,根据其工作性质,采用真空粉末绝热形式。储罐由一个碳钢真空外壳和一个置于其中的不锈钢内容器组成。经使用单位检验、调试与试验表明,该容器完全符合设计和使用要求。  相似文献   

2.
王永兴 《山西化工》2003,23(4):51-53
大型立式圆筒型储罐需在现场施工,其设计上也与一般压力容器有较大区别。参照压力容器及气柜的标准,结合设计经验,着重阐述了大型立式圆筒形储罐的设计要点。  相似文献   

3.
侯雪鹏 《广东化工》2015,42(4):104-106
文章在参考相关行业标准和前人总结的经验基础上,结合现场施工过程中经历整合而出一种综合排版方法,希望能对提高同行业施工质量起到一定的作用,并达到优化排版的目的。  相似文献   

4.
大型立式低温液化天然气LNG储罐是储存、运输LNG的关键设施,其占地面积较小、成本较低,便于管理。基于此,有必要对大型立式低温LNG储罐的结构设计和强度进行研究,旨在提高大型立式低温LNG储罐的性能,提高LNG的运输效率。主要对大型立式低温LNG储罐结构、设计要求、强度分析进行了研究。  相似文献   

5.
低温液氨储罐的保冷设计   总被引:2,自引:0,他引:2  
本文介绍低温液氨储罐保冷结构形式与设计。  相似文献   

6.
随着能源需求的日益增大,比石油更为清洁、经济的天然气必将成为主要能源。简述了液化天然气(LNG)的优势,耐低温LNG储罐的特殊要求、设计难点及储罐的类型,对LNG的现状进行了分析,说明了LNG储罐大型化的优势,为LNG的工程建设提供参考。  相似文献   

7.
本文旨在对大型低温储罐的设计进行研究,以大型低温液化气储罐的设计为例,具体介绍了了液化气的存储方式;并探讨了低温常压存储设备的设计选材,主要包括了钢材以及保冷选材等等;接着研究了保温层的结构设计,包括了罐顶的结构设计、罐壁结构设计、罐底的结构设计;最后,分析了储罐的基础设计,具有一定的现实意义。  相似文献   

8.
本文阐述了大型低温常压储罐的典型结构和严格的制造工艺,分析了在制造上得难点,有针对性地提出了解决难点的制造方案,记录了实际制造的经验数据,对类似设备的制造有着重要的参考价值。  相似文献   

9.
建立立式圆筒储罐罐体质量函数表达式,应用极值理论导出储罐最经济内径公式;并采用数值理论反复迭代法,最终确定储罐的最经济内直径值,以该内径值作为储罐的内直径,这样设计的储的总质量最小。  相似文献   

10.
大型低温储罐焊接概要   总被引:4,自引:0,他引:4  
论述了大型低温储罐的焊接工艺过程.阐述了大型低温储罐用钢的组织特点和焊接热循环中材料的转变,提出了对焊接接头的基本要求和主要工艺原则,并在分析中引入了断裂力学的基本概念.  相似文献   

11.
介绍了研制的气瓶疲劳试验设备原理及构成,并对设备的设计及自动控制方面进行了比较详细的探讨。  相似文献   

12.
刘勇 《贵州化工》2009,34(3):54-55
总结工作实际,详细论述了低温液氧充瓶系统的构成,阐述了低温液氧贮罐和低温液氧泵的技术参数及处理对策。  相似文献   

13.
从结构设计、材料要求、最高允许工作压力确定等方面介绍了低温液氯贮槽的设计要点。  相似文献   

14.
低温储罐现场主体安装工艺   总被引:1,自引:0,他引:1  
目前国内外在大型储罐建造中主要以原油储罐为主,而大型低温储罐的建造较少,我们通常所指的低温罐是以公称容积大于或等于10000m3,设计温度不高于-45℃且不低于-168℃的立式圆筒形低温储罐。低温钢对主体安装工艺的要求非常严格,特别是对于施工工序及安装顺序的要求,因此如何控制施工程序,制定出合理的主体安装工艺将是研究中的重点内容。  相似文献   

15.
16.
内压圆筒压力试验的强度问题   总被引:1,自引:0,他引:1  
运用材料力学中径公式和弹性力学拉美公式,对内压圆筒的最大应力计算的两结果进行比较,当外、内径比K≤1.5时,两者误差不超过4%.GB150-198中径公式校核圆筒压力既方便又合理.  相似文献   

17.
The catalytic performance and the behavior of NOx storage and reduction (NSR) over a model catalyst for lean-burn gasoline engines have been mainly investigated and be discussed based on the temperature and reducing agents use in this study. The experimental results have shown that the NOx storage amount in the lean atmosphere was the same as the NOx reduction amount from the subsequent rich spike (RS) above the temperature of 400 °C, while the former was greater than the latter below the temperature of 400 °C. This indicated that when the temperature was below 400 °C compared with the NOx storage stage, the reduction of the stored NOx is somehow restricted. We found that the reduction efficiencies with the reducing agents decrease in the order H2 > CO > C3H6 below 400 °C, thus not all of the NOx storage sites could be fully regenerated even using an excessive reducing agent of CO or C3H6, which was supplied to the NSR catalyst, while all the NOx storage sites could be fully regenerated if an adequate amount of H2 was supplied. We also verified that the H2 generation more favorably occurred through the water gas shift reaction than through the steam reforming reaction. This difference in the H2 generation could reasonably explain why CO was more efficient for the reduction of the stored NOx than C3H6, and hinted as a promising approach to enhance the low-temperature performance of the current NSR catalysts though promoting the H2 generation reaction.  相似文献   

18.
就低温双层贮罐(金属罐体结构部分)施工,介绍低温双层贮罐的结构形式,以及内外罐正装,内外罐液压提升倒装,内外罐正装顶盖充气顶升等国内外不同施工方法和工艺。  相似文献   

19.
A survey is given of the problems encountered in measuring where detonation physics are involved and the measurement procedures applied in their solution. The cylinder test is assigned a part within this framework and compared with competing measurement procedures. This test makes it possible to calculate the progression of detonation product expansion from the widening of the tube measured which, in turn; is needed as an input for computer programs to examine material deformation caused by explosives. The LLNL and ICf evaluation programs are presently available for this purpose. In addition, Gurney energies can also be determined as characteristic magnitudes for explosive effects either directly from the tube expansion or indirectly from the product expansion. Apart from density of explosive and velocity of detonation, both the Chapman-Jouguet pressure as well as the detonation heat are required in order to establish the initial point of the product expansion curve. In the ICT program, both quantities can also be obtained through detailed examination of the flow conditions in tubes of variable cross-sections, in conjunction with limit observations on the wall expansion progression; this makes the cylinder test independent of other measurement procedures.  相似文献   

20.
The results obtained during the set‐up of a method for the prediction of biodiesel storage stability are shown. In order to speed up the rate of ageing processes, the test temperature was set to 80 °C, and tests were carried out within 24 h in a Rancimat modified cell apparatus. The effect of the quick ageing process can be monitored by means of the evaluation of changes in ester content, polymer content and peroxide value. By comparing the results obtained during a 1‐year experiment, carried out under real storage conditions, and during a second test, carried out at 43 °C for 24 wk according to ASTM D 4625 method, with the ones reported in this paper, several discrepancies regarding the different degradation reactions as well as the rate at which these reactions take place were evidenced. Finally, a tentative relationship between the results obtained with the proposed quick test and the real Rancimat induction period, shown by different samples after 12 months of real storage, are shown. From the results obtained during this work, the Oxidation Stability test carried out according to EN 14112:2003 and the Storage Stability test reported herein may provide different information for the evaluation of the overall stability of a biodiesel sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号