首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《纺织学报》2015,36(4):31-0
 以滚筒为收集装置,用静电纺丝技术制备了有序排列的丝素蛋白/聚己内酯(SF∕PCL)复合纳米纤维膜。利用FE-SEM和MATLAB软件对不同转速下收集的SF/PCL纳米纤维的形貌及排列有序程度进行表征;利用双轴拉伸试验仪对纳米纤维膜的力学性能进行测试。结果表明:滚筒转速越大,纳米纤维排列有序程度越高;纳米纤维膜力学性能表现出各向异性,同时具有明显的非线性和非弹性。对实验曲线进行拟合,建立了纳米纤维膜在双轴循环拉伸作用下的拉伸负荷-伸长率数学模型。以滚筒转速4.70m/s的试样为例,数学模型拟合曲线与实验曲线具有较高的一致性。  相似文献   

2.
对静电纺丝素蛋白(SF)/聚己内酯(PCL)复合纳米纤维膜在拉伸速率比为1∶1、2∶1、5∶1、8∶1下进行双轴向拉伸破坏实验和在拉伸速率比为1∶1、2∶1、4∶1、5∶1、8∶1下进行双轴向循环拉伸实验。结果表明,静电纺纳米纤维膜拉伸断裂负荷与施加的拉伸速率比有关,静电纺纳米纤维膜在循环载荷作用下具有非线性非弹性的特性。对双轴向循环拉伸负荷与伸长率曲线进行拟合,建立了静电纺纳米纤维膜在双轴向循环拉伸加载段的数学模型。以拉伸速率比为4∶1的循环拉伸曲线为例,运用该数学模型所得曲线与实验曲线比较一致,证实模型有效。  相似文献   

3.
利用高压静电纺丝技术制备丝素(SF)/聚己内酯(PCL)纳米复合纤维膜。通过热场发射扫描电镜、傅里叶红外光谱、广角X-射线衍射和力学拉伸的方法表征了纳米纤维膜的结构与力学性能。结果表明:随着纺丝液浓度的提高,纤维直径增大,在电纺液浓度为20%时,纳米纤维网中纤维形态清晰、直径分布较均匀、成膜性较好;随着溶质中丝素含量的降低,纳米纤维膜的力学拉伸性能由硬而脆向软而弱转变,在SF含量达到50%时,纤维膜的力学性能已得到较好改善;甲醇可诱导SF的分子构象从无规卷曲和SilkⅠ转变为SilkⅡ;纳米纤维膜中纤维呈无规则排列,双轴力学拉伸表现为各向同性。  相似文献   

4.
为改善静电纺聚丙烯腈/聚氨酯(PAN/PU)纳米纤维透明膜的力学性能,在静电纺丝过程中采用旋转滚筒作为接收装置,并经热处理的方法制备取向性PAN纳米纤维增强PU基(PANNFs/PU)透明多孔膜。借助扫描电子显微镜、红外光谱仪、多功能拉伸仪表征纤维膜的形态结构和力学性能,并讨论了不同纺丝转速对PANNFs/PU膜力学性能的影响。结果表明:随着接收滚筒转速的提高,PAN/PU多孔膜中纤维沿着滚筒旋转方向排列的趋势越来越明显;当滚筒转速为1 500 r/min时,PAN/PU多孔膜沿滚筒旋转方向断裂应力为103.3 MPa;当PANNFs-PU透明膜沿滚筒旋转方向的断裂应力达到306.8 MPa,垂直滚筒旋转方向的断裂应变达到163.1%,PANNFs/PU透明膜的力学性能相比于PAN/PU多孔膜显著提高。  相似文献   

5.
静电纺取向纳米纤维具有各向异性的微观结构与较高的力学性能,因此具有更广泛的应用。利用一种新型的静电纺收集装置制备取向聚乳酸(PLLA)纳米纤维,该收集装置包括一个旋转的滚筒和两块平行电极。为进一步研究该收集装置制备取向纳米纤维的机理,利用Ansoft Maxwell电磁模拟软件模拟了静电纺过程中的电场分布。制得的取向PLLA纳米纤维的直径为(405±102)nm,扫描电子显微镜(SEM)显示,该PLLA纳米纤维具有较好的取向性,取向排列程度为91.2%。力学拉伸试验显示,取向PLLA纳米纤维的力学性能具有各向异性,其拉伸强度、断裂伸长率和杨氏模量都远大于普通非取向PLLA纳米纤维。  相似文献   

6.
为了探讨溶液性能及纺丝参数对静电纺取向纳米纤维形态的影响,制备不同质量分数的聚丙烯腈(PAN)溶液和加入不同质量分数LiCl的PAN溶液,对溶液黏度和电导率进行测试,并利用旋转的滚筒制备了不同的取向纳米纤维。研究表明:PAN溶液黏度和电导率都随着溶液质量分数的增加而增加,且黏度呈指数增加;而随着LiCl质量分数的增加,PAN溶液的黏度略有下降,而电导率显著增加。相同滚筒转速(2000 r/min)下,PAN纳米纤维的取向排列程度随着溶液质量分数的增加先提高后降低,12%的PAN纳米纤维的取向排列程度最好;而随着LiCl质量分数的增加,PAN纳米纤维的取向排列程度增加。当滚筒转速从1500 r/min增加到2500 r/min,纳米纤维的取向排列程度也增加了。  相似文献   

7.
利用静电纺丝技术,通过改变转鼓转速,制备并复合形成三层自增强PAN纳米纤维复合隔膜。研究不同转鼓转速下所得中间层用PAN纳米纤维膜的排列及形貌特点,测试三层自增强PAN纳米纤维复合隔膜的物理力学性能及电化学性能,以评价其综合表现。结果表明:当中间层的转鼓转速为700 r/min时,制备的三层自增强PAN纳米纤维复合隔膜在纵向(即收集方向)的拉伸断裂强度达到最大,为13.10 MPa;室温下的孔隙率和吸液率分别为78.3%和356.3%,20℃下的离子电导率高达0.63 m S/cm,电化学稳定电压达到5.0 V,电化学稳定性优异;由其制备的锂离子电池拥有较高的首次放电比容量值,达138.4 m A·h/g。三层自增强PAN纳米纤维复合隔膜的综合性能能够满足锂离子电池的需要。  相似文献   

8.
为制备模拟细胞外基质结构的微纳尺度复合材料,利用静电纺丝技术制备了聚己内酯(Polycaprolactone,PCL)微米纤维膜,通过与纳米尺度的细菌纤维素(Bacterial Cellulose,BC)原位复合,制备了BC/PCL复合纤维支架。采用扫描电镜、红外光谱分析、X射线衍射分析对材料的形貌、结构进行了表征。通过单轴力学测试对复合材料力学性能进行了研究,并利用成纤维细胞对复合材料的生物相容性进行评价。结果表明:通过静电纺丝法制备的PCL微米纤维的平均直径,随聚合物纺丝液质量分数的增加有增加的趋势,BC与PCL微米纤维复合后,BC纳米纤维渗透入微米纤维膜内部,实现微纳米纤维较好的复合。红外光谱分析和X射线衍射分析进一步证明BC和PCL微米纤维成功复合。PCL微米纤维膜复合BC膜后,相比PCL微米纤维膜增加了其断裂强度,同时复合支架无明显细胞毒性,可应用于生物医学领域。  相似文献   

9.
静电纺PLA取向超细纤维膜的结构与性能   总被引:2,自引:1,他引:1  
通过静电纺丝法,以高速旋转的滚轴为收集装置,制备了具有较好取向的聚乳酸(PLA)超细纤维膜。研究了该取向纤维膜的形貌结构、微细结构和力学性能,并与以平板为收集装置制得的无规排列PLA纤维膜进行比较。结果表明:滚轴转速对纤维取向具有较大影响,当滚轴转速为2 000 r/m in时可获得具有较好取向的纤维;PLA取向纤维膜的结晶度高于无规排列PLA纤维膜,前者的力学性能好于后者。  相似文献   

10.
通过静电纺丝技术制备出不同质量比的聚乳酸聚己内酯/ 丝素蛋白(PLA-PCL/SF)复合纳米纤维膜支架,采用扫描电子显微镜、傅里叶红外光谱仪对纳米纤维膜的形貌和结构进行表征,测试纤维膜的孔隙率和吸附性能。结果表明:PLA-PCL与SF 这2 种组分的质量比对复合纳米纤维膜的形貌有显著影响,质量比为90:10和70:30的纳米纤维表面分布着密集的孔洞;PLA-PCL/SF复合纳米纤维膜中SF 经甲醇处理后由无定形结构转变为β?折叠结构;随着复合纳米纤维膜中SF 含量的增加,纳米纤维膜的孔隙率和吸附性也逐渐降低。接触角实验和小鼠胚胎成纤维细胞(NIH-3T3)培养结果表明,SF的加入提高了纳米纤维膜的亲水性,有利于NIH-3T3细胞的黏附和增殖。  相似文献   

11.
为研究静电纺丝丝素蛋白/聚己内酯共混复合纳米纤维的力学性能,为其在组织工程支架方面的应用提供指导,制备了静电纺丝丝素蛋白/聚己内酯共混复合纳米纤维膜,对其中单根纤维的力学性能进行了直接拉伸测试。测试结果显示了大变形情况下共混静电纺丝纤维的拉伸力学性能特点。通过总结其中的数学规律,进行参数拟合,获得了可应用于静电纺丝膜力学模型研究的应力应变函数。  相似文献   

12.
为开发具有一定导电性的组织再生材料,采用静电纺丝法制备了丝素纳米纤维膜,通过原位氧化聚合获得了聚吡咯/丝素导电性纳米纤维膜,探究了纺丝参数对纳米纤维膜表面形貌的影响,利用四探针测试仪测试了纳米纤维膜的导电性,借助红外光谱仪对纳米纤维膜化学结构进行了表征。结果表明:在质量浓度为0.16 g/mL,推注速度为0.2 mL/h,电压为20 kV,滚筒转速为1 000 r/min的条件下,制备的丝素纳米纤维膜表面规整,珠状物少,纤维平均直径为(520.70±140.81) nm;在吡咯单体浓度为0.3 mol/L,掺杂剂浓度为0.3 mol/L,吡咯单体与FeCl3的量比为1∶2,聚合时间为6 h条件下,制备的聚吡咯/丝素导电性纳米纤维膜保留了丝素纳米纤维膜原有的纳米纤维结构,电导率达到(0.44±0.07) S/cm。  相似文献   

13.
潘璐  程亭亭  徐岚 《纺织学报》2020,41(9):167-173
为使细胞在静电纺纳米纤维支架上得到更佳的生长与黏附,采用改进的静电纺丝装置制备具有良好生物相容性的聚己内酯(PLC)/聚乙二醇(PEG)大孔径复合纳米纤维膜,探究纺丝溶液中溶质质量配比与溶液质量分数对纳米纤维膜形貌及性能的影响,确定最佳工艺参数;将最佳工艺条件下制备的纳米纤维膜初步应用于组织工程,并与传统静电纺丝装置制备的纤维膜进行细胞相容性对比分析。结果表明:当PLC和PEG的混纺质量比为80∶20,纺丝溶液质量分数为25%时,获得的PCL/PEG大孔径纳米纤维膜质量最好;与传统静电纺PCL/PEG纳米纤维膜相比,PCL/PEG大孔径纳米纤维膜更利于细胞的生长和增殖,更适合作为组织工程支架材料。  相似文献   

14.
静电纺丝是一种常用且有效地制备纳米纤维的方法,但其制备的纳米纤维多为无序排列结构,具有各向同性、力学性能较差等缺陷,限制了纳米纤维的应用.因此,对静电纺丝装置进行相应的改进,从而得到具有各向异性且力学性能较好的有序纳米纤维,可进一步拓宽纳米纤维的应用领域.此外,传统单针头静电纺丝技术制备效率低,使得静电纺有序纳米纤维产...  相似文献   

15.
为优化医用纤维材料的蛋白吸附性能,本研究通过静电纺丝技术制备聚ε-己内酯(PCL)纳米纤维膜,利用乙醇和不同浓度的氢氧化钠(NaOH)对其进行改性处理,分析了碱处理对PCL纳米纤维膜的表面形貌、力学性能、润湿性的影响.随后选取牛血清蛋白(BSA)作为模型蛋白,探究了碱处理后PCL纤维膜的蛋白吸附性能.研究结果表明,经乙...  相似文献   

16.
利用静电纺丝法将胶原蛋白肽与普鲁兰共混,以水为唯一溶剂,制备纳米纤维膜,研究不同胶原蛋白肽添加量对纺丝效果的影响。分析不同胶原蛋白肽/普鲁兰配比对纺丝液溶液性质的影响,使用扫描电镜(SEM)和傅里叶变换红外光谱(FTIR)测试,分析纤维膜的微观形貌及分子间相互作用。利用高级综合热分析系统和单纤维强力仪研究纤维膜的热学及力学性能。结果表明,胶原蛋白肽含量对溶液电导率影响显著,在胶原蛋白肽/普鲁兰配比为60/40时可以得到均匀度高的纳米纤维,平均直径为300 nm,纤维膜的应力、应变值与COP含量成反比。拟合结果显示,胶原蛋白肽与普鲁兰之间的分子间相互作用力以分子间氢键为主,纳米纤维膜DSC曲线上的热焓值较单一成分小,热稳定性得到改善。  相似文献   

17.
为开发用于空气过滤的纳米纤维,采用静电纺丝技术制备了聚丙烯腈(PAN)纳米纤维膜,探讨了其纺丝液质量分数及纺丝电压对所纺纤维微观形貌的影响,同时研究了纤维膜厚度对过滤效率和压降的影响。实验结果表明:PAN纺丝液质量分数为12%,纺丝电压为20 k V时,所得纤维粗细均匀,平均直径为230 nm;当纤维膜厚度由18μm增至35μm时,过滤压降则由121.93 Pa升至591.75 Pa,而过滤效率由81.78%升至99.24%。对过滤性能较好的纤维膜分别进行力学性能和泡压法滤膜孔径测试,测得此纤维膜的弹性模量为223.67 MPa,断裂伸长率为51.96%,拉伸断裂应力为5.93 MPa,拉伸强度为7.77 MPa,拉伸屈服应力为2.79 MPa,平均孔径为2.064 3μm。  相似文献   

18.
为获得纵向拉伸性能优异的静电纺丝锂离子电池隔膜,首先在不同转速条件下制备聚丙烯腈(PAN)纤维膜,分析得出在700 r/min 时,PAN 纤维排列取向性最好。然后将在700 r/min 条件下制备得到的PAN 增强层纤维膜作为中间层,结合上下2 层杂乱分布的聚酯(PET)纤维膜形成取向增强复合隔膜,在低速(100 r/min)条件下制备了PET/PAN/PET 各向同性纤维膜作为对比膜。表征了2 种隔膜的物理力学性能及电化学性能。结果表明:取向增强复合隔膜的吸液率为371%,热收缩率为4.1%,室温下离子电导率为0.553 ms/cm,电化学稳定窗口为5.27 V;由其制备的电池首次放电比容量为138.0 mA?h/g;纵向拉伸断裂强度为9.2 KPa,比对比膜提高了130%,该取向增强复合隔膜机械强度显著提高,综合性能优于PET/PAN/PET 各向同性纤维膜。  相似文献   

19.
利用共混静电纺丝技术,将合成的卤胺前驱体聚合物PSPH与乙烯-乙烯醇共聚物(EVOH)进行复合制备EVOH/PSPH复合纳米纤维膜,并通过氯化处理EVOH/PSPH复合纳米纤维膜制备可用于水消毒的卤胺改性EVOH纳米纤维膜。重点分析卤胺前驱体聚合物PSPH的引入对EVOH/PSPH复合纳米纤维膜的纤维形貌、孔径结构及力学性能的影响,并探究卤胺改性EVOH纳米纤维膜的杀菌效果和杀菌机理。试验结果表明,质量分数为1%的PSPH可有效改善EVOH/PSPH复合纳米纤维膜的纤维形貌和孔径结构,增强其力学性能;卤胺改性EVOH纳米纤维膜具有良好的杀菌性能,其在5 min的接触时间内杀菌效率高达99.999%。  相似文献   

20.
为研究纺丝参数对纳米纤维取向的影响,采用改进的间隔导电板法制备聚己内酯(PCL)取向纳米纤维膜,其中,PCL的质量分数为12%,溶剂是体积比为5∶1的二氯甲烷与N,N-二甲基甲酰胺混合溶液。通过偏光显微镜观察PCL纳米纤维取向度,并对PCL纳米纤维取向度进行了数据分析,探讨了纺丝距离和铜板间距2个参数对纤维取向的影响。结果表明:PCL纳米纤维的取向度会随着纺丝距离的增大而减小,但纺丝距离过小会导致纤维膜的取向度降低;随着2块铜板间距的增加而增大,且当铜板间距增加到某个值后,纤维膜的取向度趋于稳定值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号