首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
LiAlH_4与NH_4Cl在醚类溶剂中反应放氢是一种新型的具有高储氢容量、能室温放氢的可控制氢技术。研究了摩尔比为1∶1的LiAlH_4与NH_4Cl(LiAlH_4-NH_4Cl)在二乙二醇二甲醚(dimethyl carbitol, DC)、正丁醚(dibutyl oxide, DO)和二恶烷(diethylene dioxide,DD)中反应的放氢行为。研究表明,LiAlH_4-NH_4Cl在DC中反应(LiAlH_4-NH_4Cl-DC)具有良好的放氢性能,在25,40,60℃的放氢量分别可以达到4.01%,4.53%和4.99%(质量分数)。LiAlH_4-NH_4Cl在DD和DO中反应(LiAlH_4-NH_4Cl-DD/DO)的放氢速率较慢、放氢量较低。LiAlH_4在溶剂中的溶解度是影响体系放氢性能重要因素。  相似文献   

2.
将PCS电子束交联丝在氨气氛中氮化热解、脱碳氨化,继在氮气氛中高温热引发缩合/转氨基反应,生成硅氮烷并最终形成氮化硅(Si3N4)纤维。所制备的Si3N4纤维白色透明,横截面和表面均光滑致密,无明显缺陷和孔洞。还研究了氮化热解的反应机理以及热解工艺对氮化硅(Si3N4)纤维结构和性能的影响。红外光谱和元素分析的结果显示,氮化热解脱碳彻底,Si3N4纤维C含量<1%;烧结温度提高,N含量随之增加,O含量则先增后减;烧结温度不超过1500℃,纤维为无定型。力学性能结果分析表明,随热解温度的提高,纤维力学性能先提后降,1300℃时达到最大值。氮化热解过程是采用NH3进行脱碳氨化,并在N2气氛下高温热引发缩合/转氨基反应产生硅氮烷并最终形成Si3N4的过程。  相似文献   

3.
袁江  魏红伟  罗静  杨剑  韦肖飞 《材料导报》2016,30(6):141-144, 149
采用基于密度泛函理论的第一性原理方法,计算了LiAlH4-Cl体系的晶体与电子结构及稳定性能。计算生成焓发现,Cl-均可替代LiAlH4晶体结构中不同位置的H原子、[AlH4]单元体及占间隙位,其占位难易程度从易到难依次为:间隙位H2位H4位H3位H1位[AlH4]单元体。H原子解离能的计算发现:在Cl-替代[AlH4]单元和占据间隙位时,LiAlH4体系的结构稳定性变差,对应体系的放氢能力提高。其中,Cl-占据间隙位时,其对应体系放氢能力最强。费米能级附近能隙ΔEH-L值变小,对应体系的结构稳定性降低,是提高LiAlH4体系放氢能力的根本原因。  相似文献   

4.
以硅酸钠(Na2SiO3.9H2O)和片状铝粉为原料,在缓冲溶液中制备SiO2包覆片状铝粉,研究不同pH值、温度、包覆量等对铝粉表面SiO2包覆层形貌的影响;用场发射扫描电镜表征包覆层的形貌,并测定粉体中SiO2的含量。结果表明:溶液pH、温度对包覆层的形貌有较大影响;在反应温度为85℃、pH=9.5的条件下,铝粉表面形成致密、表面平滑的SiO2包覆层。  相似文献   

5.
本文选用NH4Cl和H2O过饱和二元溶体为研究对象,研究其在稳恒电场作用下溶体中游离晶的重熔规律及晶体生长规律.利用显微镜感光器件(CCD)及智能通讯测温仪表,对实验过程进行实时照片拍摄和实时温度记录.结果表明:电场的Joule Heat效应为决定性因素,使得NH4Cl溶体温度场显著变化,导致糊状区的游离晶重熔明显;N...  相似文献   

6.
BaTiO3颗粒对分散剂PMAA-NH4的吸附机制研究   总被引:2,自引:0,他引:2  
通过ζ电位测量及PTIR分析,研究了BaTiO3颗粒对阴离子型分散剂PMAA-NH4的吸附机制。结果表明,加入PMAA-NH4后,由于BaTiO3颗粒表面上存在Ba-OH2^ 的正电荷中心,从而吸附了分散剂的阴离子,使BaTiO3表面带电特性改变,等电点由pH=5.1移至pH=3.5,当pH=10,PMAA-NH4的加入量为0.8wt%时,BaTiO3颗粒表面吸附达到饱和,可以得到稳定性好的BaTiO3悬浮体。  相似文献   

7.
AlPO4包覆对LiVOPO4电化学性能的影响   总被引:1,自引:0,他引:1  
以LiVOPO4、Al(NO3)3.9H2O、H3PO4为原料,采用溶胶-凝胶法制备了AlPO4包覆的LiVOPO4粉末(AlPO4包覆LiVOPO4)。采用热重与差热分析、X射线衍射分析、扫描电镜分析以及电化学测试等手段对AlPO4包覆LiVOPO4的微观结构、表面形貌和电化学性能进行了研究。结果表明,AlPO4以无定形态包覆于LiVOPO4颗粒表面形成AlPO4包覆LiVOPO4粉末。由于在LiVOPO4颗粒表面包覆了一层无定形的AlPO4后,阻止了电极与电解质溶液之间的副反应,降低了电化学阻抗,因此,与未包覆的LiVOPO4粉末相比,AlPO4包覆LiVOPO4具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。  相似文献   

8.
冯倩 《工程爆破》2022,(4):125-130
为了研究铝粉尘浓度对爆炸压力的影响,通过搭建大型水平圆管爆炸装置,分析了铝粉尘爆炸时爆炸压力随浓度的变化规律。实验结果表明:甲烷爆炸的冲击波和火焰能有效地引燃铝粉,使其发生二次爆炸,并大大增强爆炸的冲击力;铝粉粒径不变,浓度分别为200、300、400、500、600 g/m3 时,爆炸峰值压力随着浓度的增大先上升后减小。工业生产中,一方面要防止多相可燃物并存,引发连锁反应;另一方面要及时清理降尘,防止粉尘发生积聚,形成高浓度粉尘云。  相似文献   

9.
KCl蒸汽对纯Ni材高温氧化行为的影响   总被引:1,自引:0,他引:1  
郭贵芬  马海涛  王来 《材料保护》2003,36(10):18-20
研究了纯Ni材于700-850℃在含有微量KCl蒸汽的O2中的高温氧化行为。结果表明,随着温度和KCl蒸汽浓度的升高,Ni材的腐蚀加剧,生成了疏松的层状氧化膜,不具保护性。KCl蒸汽对材料的腐蚀加速是通过与材料表面的氧化膜反应生成Cl2,O2又导致活化氧化的结果。  相似文献   

10.
双层包覆对铝粉耐腐蚀性能的影响   总被引:2,自引:2,他引:0  
为了提高铝粉的耐腐蚀性能,在铝粉表面进行了无机-有机、有机-无机双层包覆,研究了反应温度、反应时间、引发剂偶氮二异丁腈(AIBN)用量、分散剂聚乙烯基吡咯烷酮(PVP)用量、n(SiO2)/n(Al)、n(H2O)/n(SiO2)对包覆效果的影响.结果表明,无机-有机包覆的最优条件是:反应温度65℃;反应时间1h;引发剂用量0.030 g,分散剂用量为0.500 g.而有机-无机双层包覆的最优条件是:n(SiO2)/n(Al)=20%,反应温度为30℃,n(H2O)/n(SiO2)=10.与原料铝粉相比,无机、有机单层包覆的缓蚀效率分别为66.1%、80.0%,而无机-有机双层包覆与有机-无机双层包覆铝粉的缓蚀效率分别可达96.4%、97.9%,即通过在铝粉表面进行双层包覆可有效地提高其耐腐蚀性能.  相似文献   

11.
直接氮化法制备氮化铝纳米线   总被引:1,自引:0,他引:1  
在氮、氢混合气气流中(氢气10%,体积比),以铝和氯化铵混合粉体为原料,在水平管式炉中采用直接氮化法合成了氮化铝纳米线。使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和透射电子显微镜(TEM)对纳米线的形貌和结构进行了检测与分析;研究了铝和氯化铵的比例(质量比)、反应温度、升温速度等因素对生成物的种类、形貌和氮化铝纳米线产量的影响。研究发现,所获得的AlN纳米线为单晶六方纤锌矿结构,表面不光滑且有非晶层,而AlN纳米线依照Vapor-Solid(VS,气-固)生长机制生长。获得了较为优化的制备氮化铝纳米线的工艺条件,利用VS生长机制和气相过饱和度概念对上述影响氮化铝纳米线生长的条件进行了初步的机理分析。  相似文献   

12.
CNT-WO3元件的氨敏性能研究   总被引:14,自引:0,他引:14  
以碳纳米管(CNT)为掺杂剂制成CNT—WO3旁热式气敏元件.采用混酸氧化法对碳纳米管进行纯化,化学沉淀法制备了纳米WO3微粉,并用TEM、FT—IR、TG—DSC、XRD等方法进行了表征.测试了元件在室温条件下对NH3的气敏性能.结果表明,碳纳米管掺杂元件在室温下对NH3的灵敏度远远高于纯WO3元件,其中0.8wt%的掺杂元件对NH3具有最高的灵敏度.另外,掺杂元件还具有检测浓度低、检测范围宽、选择性好等优点,是一种较为理想的氨敏元件.  相似文献   

13.
原位氮化法制备纳米TiN-Al2O3复合粉体   总被引:8,自引:0,他引:8  
以化学沉淀法的制备的纳米TiN-Al2O3复合粉体为原料,采用原位选择性氮化的方法制备了纳米TiN-Al2O3复合粉体。应用化学热力学原理分析,计算了氮化反应的条件和机理,研究了氮化条件对氮化反应的影响,实验结果表明,氮化反应在700℃时开始进行,在900℃保温5h,氮化反应进行完全,TEM照片显示纳米TiN颗粒均匀分布于Al2O3基体中,径粒为50-70nm。  相似文献   

14.
B4C陶瓷的协同增韧   总被引:7,自引:0,他引:7  
采用热压工艺制备的B4C-35vol%TiB2复相陶瓷的断裂韧性值从单体B4C的3.6MPa-m^1/2以6.5MPa.m^1/2, 游离碳后的韧性进一步提高,达7.6MPa.m^1/2,显微结构观察表明,材料韧性的改善是因第二相颗粒的TiB2和基体B4C之间的热膨胀系数不匹配而产生的残余应力导致的偏转和游离碳的 产生的微开明纹协同增韧的结果,游离碳的存在削弱了界面的结合强度,在很强的残余应力的和  相似文献   

15.
ZnO:Al thin films varying the thickness from 80 to 110 nm were deposited on polished float zone < 100 > Si wafers by radio frequency magnetron sputtering at 100 °C. To texturize these surfaces with the aim of being used as antireflective coating, a wet etching process based on NH4Cl was applied. Taking into account that the layer thickness was small, the control of the etch parameters such as etchant concentration and etching time was evaluated as a function of the textured film properties. An appropriate control of the etching rate to adjust the final thickness to the 80 nm required for the application was realized. Using NH4Cl concentrations of 10 wt.% and short times of up to 25 s, an increase of the film roughness up to a factor of 5.6 of the as-deposited films was achieved. These optimized textured films showed weighted reflectance values below 15% and considerable better electrical properties than the as-deposited 80 nm-thick ZnO:Al films.  相似文献   

16.
首先采用溶胶-凝胶法在Al2O3基体上制备了TiO2纳米晶薄膜,然后在管式气氛炉中,用氨气作为还原剂,直接氮化制备TiO2纳米晶薄膜;从而成功地的α-Al2O3陶瓷基片上制备了纳米晶TiN薄膜。利用XRD、XPS、FE-SEM等分析技术,研究了制备的纳米晶TiN薄膜的相组成及形貌。结果表明最佳工艺条件为:氮化温度为700℃,氮化时间为1h。  相似文献   

17.
采用氯化铵(NH4Cl)溶液对磁控溅射技术制备的掺铝氧化锌(AZO)薄膜进行表面织构,并对其表面织构机制进行研究.研究结果表明NH4Cl溶液优先与间隙锌、间隙铝等缺陷和晶界处的堆积铝反应,而较大的相对应力和稀疏表面有助于间隙锌、间隙铝等缺陷和堆积铝的形成.它们对NH4Cl对AZO薄膜的表面织构很关键.  相似文献   

18.
研究了碳热还原氮化含MgAl2O4相氧化铝的反应过程,结果表明:碳热还原含MgAl2O4相的氧化铝,与引入氧化镁外加剂一样,可以在低温下制备尖晶石型氮氧化铝,不同的MgAl2O4尖晶石相含量对反应过程的影响不同,引入量的增加,有利于氮氧化铝相的生成;反应温度的提高,加速了还原氮化反应的过程,不同条件下所制备的氮氧化铝具有不同的晶格常数。  相似文献   

19.
B4C超细粉末的制备及烧结   总被引:10,自引:0,他引:10  
采用气流粉碎对B4C粗粉(比表面积0.52m^2/g,中位粒径20.4μm)进行了一系列粉碎实验,研究了气流粉碎次数,成形压力和烧结温度对烧结密度的影响。结果表明,当粉碎次数达到3次后,可获得<1μm的B4C超细粉末。经过4次气流粉碎的B4C超细粉末的比表面积为2.53m^2/g,中位粒径为0.56μm;该粉末分别于2200和2250℃无压烧结1h,其烧结密度分别达到理论密度的78.6% 82.5%,平均晶粒尺寸分别为28和50μm,抗压强度分别为390和555MPa。  相似文献   

20.
多晶硅薄膜的表面处理工艺   总被引:2,自引:0,他引:2  
采用NH3和N2O的等离子体分别对p-Si(多晶硅)薄膜表面进行了钝化处理,处理后的p-Si TFT(薄膜晶体管)具有比未处理FTF更优越的性能,通电试验与热应力试验后,处理后的器件呈现出更好的承受电负荷和热应力能力,钝化的微观机理是NH3和N2O等离子体中和了p-Si薄膜的悬挂键,形成牢固的Si-N键,减少了表面态密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号