首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 780 毫秒
1.
郜爽  李智灵  王爱杰  黄聪 《环境工程》2022,40(4):29-34+70
在反硝化脱硫工艺体系内投加填料,进一步促进了菌剂的生物强化效果,实现了核心功能菌群的优化调控,提升了反硝化脱硫工艺体系的效能。研究发现:填料系统将单质硫的生成效能提升到对照组的1.5倍左右。无生物强化时填料表面生物膜中优势菌属为Pseudomonas和Azoarcus;填料和菌剂共同作用,可以将单质硫生成效能提升到对照组的2倍,此时生物膜优势菌属为Pseudomonas和Arcobacter,生物强化促进了硫氧化功能基因的表达。投加Pseudomonas sp.gs1进行生物强化,提升了填料表面生物膜的抗冲击负荷能力,系统经过冲击后单质硫生成率可以迅速恢复。  相似文献   

2.
以基于同步去除/富集磷酸盐的厌氧/好氧交替生物膜序批式反应器内生物膜为研究对象,研究了胞外聚合物(EPS)内磷含量形态及生物膜内微生物种群变化,探究EPS在生物膜去除/富集磷酸盐中的作用及其与微生物种群之间的联系.结果表明,生物膜反应器在厌氧外加COD为200 mg·L-1的条件下富集到了磷浓度为120.95 mg·L-1的富集液.EPS在生物膜吸/释磷过程中发挥重要作用,EPS磷含量占生物膜磷含量的69.16%~79.00%,31P核磁共振实验表明ortho-P为EPS内主要磷形态,占比为85.47%~88.60%.高通量测序结果表明生物膜内微生物种群变化明显,Candidatus_Competibacter为优势菌属,其丰度由1.23%增至38.87%,有利于形成更具粘性的EPS进而黏附在生物膜上,可能促进EPS在吸/释磷中发挥作用;暖绳菌科为优势聚磷菌,随实验温度升高,其丰度由5.29%减至4.90%.  相似文献   

3.
以Monod模型为基准,推导多菌种生物膜内各菌种生物量的推定模型.以东深供水原水生物预处理工程为研究对象,对生物填料进行静态、批量实验,推算生物膜内亚硝化菌(AOB)和硝化菌(NOB)在生物池内的沿程分布规律及其基质限制条件;进行生物膜内AOB和NOB的培养计数实验及反应器系统出水模拟,验证生物量推定结果.结果表明:多菌种生物膜内AOB和NOB生物量的动力学推定,方法简单、可行;生物膜内AOB和NOB的活性生物量沿池长均呈两头低中间高的特殊分布;膜内AOB和NOB的活性生物量分别占相应总生物量的68.2%~74.2%和25.0%~29.9%;以这些活性的AOB和NOB生物量推定结果进行反应器系统出水模拟效果相当理想.  相似文献   

4.
为研究基于硫自养反硝化和厌氧氨氧化耦合工艺中微生物群落结构和多样性特征,从稳定运行的HABR厌氧折流板反应器中采集生物膜样品,利用PCR-DGGE技术分别对反应器中4个格室进行群落结构解析。结果表明,微生物群落变化与水质环境中的有机物、氮和硫的浓度有关,微生物群落结构在不同的格室中变化较大,4个格室中的细菌的Shannon-Wiener指数(H)由左至右依次减小,相邻格室的相似性较高。经过克隆测序分析,HABR反应器内的微生物多为硫自养反硝化菌和厌氧氨氧化菌,并且出现了Sulfurimonas菌种,该类菌种是同步脱硫反硝化作用的主要功能菌,它们对污水中硫及氮的去除发挥了重要的作用。  相似文献   

5.
基于连续流A/O流离生物膜反应器内同步硝化反硝化的研究结果,以流离生物膜内菌群为整体研究对象,在富氧条件下,对依赖不同氮源生存的细菌的活性、以及具有的反硝化特征进行了研究.研究结果表明,温度25~30℃、溶解氧4.0~6.0 mg·L-1条件下,低碳氮比废水在硝化菌和好氧反硝化菌共同作用下,总氮和氨氮浓度稳步下降,亚硝酸盐和硝酸盐在试验持续时间内无明显积累现象.再分别以硝酸盐氮和亚硝酸盐氮为氮源,在高温(40℃)条件下18 h内即被完全去除,证明流离生物膜内的好氧反硝化菌脱氮效果好,且对高温水环境耐受力强.相对于单一菌群的反硝化研究,以多种细菌整体为研究对象的试验研究具备实际应用的可能性.  相似文献   

6.
包涵  张卫东  宫正  薛源 《环境科学》2009,30(5):1461-1467
基于16S rDNA基因的分子生物学方法,对运行单级自养脱氮工艺的膜曝气生物膜反应器(membrane-aerated biofilm bioreactor, MABR)内的2个主要效应菌群(氨氧化菌和厌氧氨氧化菌)之间的协同作用关系和在生物膜上可能的空间分布进行研究.荧光原位杂交结果显示,试验的曝气生物膜主要存在2个明显的功能层,一个是靠近曝气膜和生物膜交界的氨氧化菌聚集层,另一个是靠近生物膜与水体交界的厌氧氨氧化菌聚集层.氨氧化菌和厌氧氨氧化菌群为曝气生物膜上的2个主要功能菌群,它们之间的合作共生和协同作用是膜曝气生物膜实现单级自养脱氮的基础.  相似文献   

7.
SMBBR处理焦化废水性能及菌群结构响应关系   总被引:1,自引:0,他引:1  
采用特异性移动床生物膜反应器(SMBBR)处理焦化废水,连续监测生物反应器处理性能.通过HS-GC/MS和Illumina高通量测序探究污染物降解与生物膜菌群结构的响应关系;利用CCA分析废水变量对微生物菌群结构的影响关系.结果表明,系统稳定运行50d时总酚去除率达96.62%,100d时硫氰化物和氰化物完全降解,其中酚、硫氰化物和氰化物对NH4+-N的降解具有毒性抑制作用.HS-GC/MS结果显示,经过好氧处理后,80%以上的有机物被完全去除,其中包括全部酚、部分含N、O杂环化合物和长链烷烃等.测序结果表明,反应时间的不同,生物膜菌群丰度和多样性存在差异.反应期间Proteobacteria(变形菌门)相对丰度最高(20.57%~34.55%),促进了苯酚的降解;优势菌属为norank_f_ODP1230B8.23unclassified_o_Micrococcalesnorank_f_Anaerolineaceae;此外,Thauera(陶厄氏菌属)、Ottowiaunclassified_o_Rhizobiales(根瘤菌属)和Thiobacillus(硫杆菌属)为系统中苯酚、SCN-和CN-的降解优势菌.CCA分析表明,pH值与Nitrospira(硝化菌属)正相关性最大,有效控制pH值可有助于硝化反应的稳定运行.本文研究结论可为生物膜法处理焦化废水提供理论依据.  相似文献   

8.
生物膜接触氧化法处理苯胺废水   总被引:8,自引:0,他引:8  
以AN3菌和硝化类细菌构成的复合生物膜降解苯胺 ,研究挂膜过程中苯胺代谢产物的变化情况、生物膜内异养菌与硝化类细菌生态分布情况 ,以及水质条件对苯胺代谢速率的影响 .结果表明 ,挂膜期间苯胺中的氮首先被降解成氨 ,然后进一步生成亚硝酸根或硝酸根 .反应器内的稳定生物膜主要由AN3菌构成 ,但靠近出水位置生物膜中的硝化类细菌密度较进水位置高 10 0倍以上 .生物膜代谢的最佳pH值范围是 6 9— 7 5 .重金属离子 ,尤其是Hg2 ,通常会对生物膜的代谢活性产生抑制作用  相似文献   

9.
悬浮载体生物膜内硝化菌群空间分布规律   总被引:4,自引:1,他引:3  
王荣昌  文湘华  钱易 《环境科学》2006,27(11):2358-2362
利用16S rRNA寡核苷酸探针荧光原位杂交和共聚焦激光扫描显微镜联用技术,对悬浮载体生物膜内硝化菌群的空间分布规律进行了分析.试验采用3组结构完全相同的悬浮载体生物膜反应器,每个反应器的曝气区为6L,沉淀区为2L,水力停留时间为1.0h,3个反应器的进水COD/NH4+-N分别为15、10和5,从反应器中取出载体颗粒表面的生物膜进行分析,研究各反应器中生物膜的微生物群落结构的变化规律.结果表明,SCBR内载体表面生物膜的总体厚度在80~120μm左右,氨氧化菌和亚硝酸盐氧化菌主要分布在生物膜表面的20~30μm左右范围内.随着进水中COD/NH4+-N的增加,氨氧化菌和亚硝酸盐氧化菌在整个生物膜中所占的比例逐步下降.  相似文献   

10.
管材对供水管网生物膜微生物种群多样性的影响   总被引:2,自引:0,他引:2  
研究了3种管材(灰口铸铁管、镀锌管和不锈钢复合管)对管网生物膜微生物种群多样性的影响.采用R2A平板培养计数可培养细菌、荧光定量PCR计数细菌总数、流式细胞法确定活菌比例、扫描电镜观察生物膜形态,高通量测序研究管段生物膜微生物种群多样性.研究结果表明:灰口铸铁管可培养菌数和细菌总数都最高,其次是镀锌管,不锈钢复合管可培养菌数和细菌总数都最少,但活菌比例方面镀锌管活菌比例高于灰口铸铁管和不锈钢复合管.扫描电镜结果与可培养菌数及细菌总数结果一致,即灰口铸铁管细菌量最高,不同管材管壁生物膜细菌形态皆以球菌和杆菌为主,并无显著差异.微生物种群多样性结果显示:灰口铸铁管生物膜种群多样性最高,镀锌管生物膜种群多样性相对较为单一,不锈钢复合管生物膜种群多样性最低.饮用水管网生物膜种群以变形菌门为主,各管道变形菌门都高达90%以上,不同管材生物膜细菌群落组成有很大差异.本研究结果对今后饮用水供水管段材料的选取具有指导性意义.  相似文献   

11.
Biogenic hydrogen sulfide is an odorous, toxic and corrosive gas released from sewage in sewers. To control sulfide generation and emission, nitrate is extensively applied in sewer systems for decades. However, the unexpected sulfide rebound after nitrate addition is being questioned in recent studies. Possible reasons for the sulfide rebounds have been studied, but the mechanism is still unclear, so the countermeasure is not yet proposed. In this study, a lab-scale sewer system was developed for investigating the unexpected sulfide rebounds via the traditional strategy of nitrate addition during 195-days of operation. It was observed that the sulfide pollution was even severe in a sewer receiving nitrate addition. The mechanism for the sulfide rebound can be differentiated into short-term and long-term effects based on the dominant contribution. The accumulation of intermediate elemental sulfur in biofilm resulted in a rapid sulfide rebound via the high-rate sulfur reduction after the depletion of nitrate in a short period. The presence of nitrate in sewer promoted the microorganism proliferation in biofilm, increased the biofilm thickness, re-shaped the microbial community and enhanced biological denitrification and sulfur production, which further weakened the effect of nitrate on sulfide control during the long-term operation. An optimized biofilm-initiated sewer process model demonstrated that neither the intermittent nitrate addition nor the continuous nitrate addition was a sustainable strategy for the sulfide control. To minimize the negative impact from sulfide rebounds, a (bi)monthly routine maintenance (e.g., hydraulic flushing with nitrate spike) to remove the proliferative microorganism in biofilm is necessary.  相似文献   

12.
针对低C/N污水处理厂二级处理出水中氮、磷去除问题,基于三维电极生物膜工艺(3DBER)反硝化脱氮碳源消耗量少的特点,构建了微电凝聚-三维电极生物膜耦合硫自养强化脱氮除磷工艺(MEC-3DBER-S).对比研究了3DBER与MEC-3DBER-S在不同电流强度条件下的运行特性,并结合基于nirS基因的克隆文库技术分析了MEC-3DBER-S中反硝化微生物的构成.运行结果表明,MEC-3DBER-S有效强化了氮、磷的去除效果,特别是提高了低电流条件下的脱氮效率;同时电流作用能够促进海绵铁腐蚀,提高除磷效果.当C/N=1.5、HRT=8h、I=300mA条件下,其TN和TP去除率分别达到75%和78%,分别比3DBER高10%和28%左右.基于nirS基因的克隆文库结果表明,MEC-3DBER-S中同时存在与具有异养、氢自养、硫自养和铁自养反硝化功能的菌属相似的细菌.该体系中有机碳源、H2、单质硫和Fe2+等电子供体可相互补充,强化了脱氮;同时,体系中还存在物化联合生物除磷的作用,强化了除磷.因而,MEC-3DBER-S复合反硝化体系保证了较高的脱氮除磷效果.  相似文献   

13.
研究了单质硫颗粒自养反硝化柱中表面和间隙生物膜的微生物群落结构、功能基因和代谢途径等生物信息学特征.结果表明,硫颗粒表面生物膜的微生物菌群多样性低于间隙生物膜.氮代谢功能基因丰度差异较为显著,间隙生物膜中硝酸盐和亚硝酸盐的胞外转运蛋白基因丰度远高于表面生物膜,分别为0.0792%、0.109%与0.0157%、0.0314%.对于还原性反硝化代谢,表面生物膜的总基因丰度却明显低于间隙生物膜,分别为0.367%、0.406%.此外,参与反硝化过程的基因丰度明显不同,特别是将NO3-还原成NO2-以及将N2O还原成N2过程中的基因.对于硫代谢,没有观察到明显的差异.APS (硫酸腺苷)氧化是将SO32-氧化为SO42-的主要途径,其基因丰度远远高于直接氧化途径,分别为0.137%与0.0005%(表面)、0.138%与0.0007%(间隙).结果表明,在单质硫自养反硝化过程中,间隙生物膜与表面生物膜中的微生物存在合作关系,协同促进硫自养反硝化脱氮过程.  相似文献   

14.
材料表面生物膜形成对环境与人类生产的影响纷繁复杂,关于环境功能材料与微生物之间的界面作用关系尚无系统阐述。介绍了材料表面生物膜的形成过程,重点解析了材料表面疏水性、形态特征、表面电荷、磁性、物质释放与电子传递等物理化学性质对生物膜形成的调控机制;综述了材料对生物膜微生物群落结构与代谢功能的影响,并且论证了不同环境功能材料与生物膜在水处理系统、废气生物处理和土壤生态修复领域协同降解污染物的潜在机制和应用情况;最后展望了材料与微生物相互作用的未来研究方向。拟为环境功能材料表面生物膜的形成与控制调控,充分发挥两者协同作用以及定向指导材料合成提供理论和技术支撑。  相似文献   

15.
嗜热真菌的生物转化功能与经济价值   总被引:5,自引:0,他引:5  
嗜热真菌是经济微生物中极为重要的一个类群,许多兼性嗜热真菌可在常温和一般高温条件下生存,它们在有机物质的生物转化和物质循环中起着重要的作用。对嗜热真菌在蘑菇培养料的制备、废物的堆肥化处理、酒曲制作等几种常见生产过程中的生物转化作用和机理进行分析,探讨嗜热真菌在人类生产活动中的作用及经济价值。  相似文献   

16.
废水中硫化物生物净化影响因素的研究   总被引:10,自引:0,他引:10  
在 上流式填 料 床 反应 器 中,利 用 无色 硫 细 菌处 理 废水 中 的 硫化 物, 当硫 化 物 浓度 为 293 ~310 m g/ L、反应器容 积负荷为5kg/ m 3·d 、溶解氧为 32 m g/ L 时,硫化物 去除率可 达到92 % ~95 % ,去除的硫化物中94 % ~96 % 转化为 S。试验结果表明:溶解氧是影响 硫化物去除效果的主要因素  相似文献   

17.
添加剂在石灰石湿法烟气脱硫工艺中的应用与分析   总被引:2,自引:0,他引:2  
本文主要介绍了添加剂在石灰石湿法烟气脱硫工艺中的应用和国内外研究现状,并对其作用机理进行了探讨。脱硫添加剂可以改善吸收剂的液相传质性能,缓冲浆液的pH值,从而提高脱硫效率,降低运行成本,在我国燃煤电厂烟气脱硫工艺中有着广阔的应用前景。  相似文献   

18.
增加内循环的生物反应器对啤酒废水处理效率的研究   总被引:1,自引:0,他引:1  
用生物流化床反应器和气提式接触氧化生物反顺处理啤酒废水时,分别从废水COD的降解速率和去除率考察了有、无内循环,墅 啤酒废水降解效率的影响。结果表明,增加内循环装置,可以强化气-液传质,明显地提高啤酒废水处理的效率。  相似文献   

19.
聚磷生物膜的快速启动及微生物特性研究   总被引:2,自引:0,他引:2  
章豪  高碧霄  潘杨  冯鑫 《环境科学学报》2019,39(10):3317-3324
在同步去除并富集磷的基础上,探究采用前期不排泥、后期排泥的挂膜方式对聚磷生物膜反应器的运行效能、微生物特征及群落结构的影响.结果表明,经过驯化运行,聚磷生物膜的蓄磷能力明显提升.在挂膜阶段,生物膜厚度及EPS含量出现一定程度的增长;PN/PS上升至3.12,PN/PS比值增加有利于微生物粘附在填料上.在好氧出水达标的情况下,富集液中磷酸盐浓度提升至89.5 mg·L~(-1),达到了鸟粪石回收标准.高通量测序结果表明,经过富集培养,微生物群落多样性呈下降趋势,群落组成变化明显.优势菌门为变形菌门(Proteobacteria),其丰度从33.6%增长至75.3%;反应器中的聚磷菌属丰度明显增加,从11.8%上升至23.2%,红环菌属(Rhodocyclaceae)、UKL 13-1为反应器中的优势聚磷菌.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号