首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
浆料催化精馏制备甲缩醛   总被引:6,自引:0,他引:6  
研究了以甲醇和甲醛为原料,以大孔径强酸性阳离子交换树脂为催化剂,通过浆料催化精馏工艺制备甲缩醛的可行性。考察了催化剂含量、进料醇醛比、进料总流量和回流比等因素对该过程的影响。在选定的试验条件下,甲缩醛收率可达89%以上,塔顶甲缩醛的质量分数可达0.99以上。结果表明,该工艺用于制备甲缩醛是可行的。  相似文献   

2.
催化反应精馏制甲缩醛   总被引:2,自引:0,他引:2  
在催化反应精馏制甲缩醛的工艺中,影响因素很多,如催化剂含量、进料醇醛比、甲醛浓度、回流比和塔顶采出。实验以甲醇和甲醛为原料,以硫酸为催化剂催化精馏制甲缩醛,在其他条件不变得情况下,通过改变采出率,考察了塔顶采出塔顶采出对甲缩醛收率和纯度的影响。  相似文献   

3.
甲缩醛在钼铁催化剂上的空气氧化反应是一个复杂的并行、连串反应。通过实验考察了其中几个主要的单一反应。为寻找高收率甲缩醛的最佳工艺条件提供了依据,并为研究反应动力学打下了基础。文中提出在原料中添加适量水可以显著提高甲醛收率。  相似文献   

4.
研究了以甲醇和甲醛为原料,大孔径阳离子交换树脂为催化剂,通过将萃取精馏和催化精馏相耦合的方法制备高纯度甲缩醛,证明了这种工艺的可行性。在内径为35 mm、高为2700 mm的玻璃反应精馏塔内进行实验,考察了总进料量、萃取剂进料位置、醇醛摩尔比、回流比以及用甲醛溶液作为萃取剂对甲醛转化率和甲缩醛纯度的影响。在选定的实验条件下,甲醛的转化率可达到97.82%以上,甲缩醛纯度可达到97.64%(含甲醛0.79%、水1.41%、甲醇0.20%)。  相似文献   

5.
对合成甲缩醛反应精馏过程进行了模拟和实验,分析了过程操作参数回流比、进料位置、醇醛进料摩尔比的变化结果的影响,模拟结果表明,当精馏段级数为11,反应段级数为26,提馏段为5,回流比为3,甲醇和甲醛的进料位置分别为第37级和第12级,甲醇/甲醛(摩尔比)=2.1时,塔顶可得到质量分数大于99.5%的高纯度甲缩醛。并通过反应精馏实验对模拟结果进行验证,实验结果与模拟结果吻合较好。  相似文献   

6.
以甲缩醛为原料合成聚缩醛二甲醚,考察了催化剂、反应温度、物料配比、反应时『司、搅拌转速等因素对反应的影响。结果表明:以树脂为催化剂,催化剂用量5、vt%左右,甲醛和甲缩醛的摩尔比为1.0~1.5:1,反应温度96~105℃,搅拌转速为600~800r/min,通入的N2初始压力0.8~1.0MPa。在此条件下反应4~6h,反应转化率达到65%左右,选择性为90%左右。  相似文献   

7.
使用Aspen Plus11.1模拟甲醇与甲醛反应精馏制备甲缩醛的过程,模拟过程采用了NRTL模型,对进料温度、进料位置、回流比进行了灵敏度分析,得到了较佳工艺参数为:进料温度40℃,进料醇醛摩尔比2∶3,进料位置为第9块塔板,回流比8。模拟得到了反应精馏塔的温度和浓度分布,对于甲缩醛的工业化生产有着重要的作用。  相似文献   

8.
通过咪唑、氢氧化钠和溴代烷烃反应生成了烷基咪唑,再与丁基磺酸内酯反应,经硫酸化直接制备了烷基咪唑酸性离子液体,以离子液体作为催化剂催化精馏制备甲缩醛,考察不同因素对催化精馏的影响,结果表明,当进料中醇醛摩尔比为3∶1,总进料量为20.1 m L/min,催化剂用量为3%(甲醛溶液质量),釜底加热温度为250℃,回流比为1时,催化精馏效果最优,此时甲醛转化率为66.70%,塔顶产品纯度为96.48%(质量百分数)。  相似文献   

9.
甲缩醛氧化制高浓度甲醛催化剂的开发与研究   总被引:2,自引:0,他引:2  
所研制的。Mo-Fe-Cr-O甲缩醛氧化制高浓度甲醛催化剂的最适宜工艺条件为反应温度360~380℃ , 混合气空速7000-1000h-1, 甲缩醛:O2=1:2(摩尔比).它具有良好的热稳定性和重现性, 催化剂制备技术可靠, 小试寿命超过1000h。单管反应器考察结果表明催化剂具有很高的活性和选择性, 甲缩醛转化率为100%。 甲醛选择性为93.5%~95.4%, 具有工业应用价值。  相似文献   

10.
利用杂多酸为催化剂,由庚醛与甲醇缩合合成庚硅二甲缩醛。研究了杂多酸的用量、反应时间、醛醇摩尔比等对缩合反应的影响。结果表明:醛醇mol比为1:3,催化剂用量为1%~2%(相对甲醇的质量比)。反应温度65~7Z℃,反应时间5~6h,庚醛二甲缩醛的收率85%。催化剂可循环使用。  相似文献   

11.
12.
Despite its industrial importance, the subject of freeze-thaw (F/T) stability of latex coatings has not been studied extensively. There is also a lack of fundamental understanding about the process and the mechanisms through which a coating becomes destabilized. High pressure (2100 bar) freezing fixes the state of water-suspended particles of polymer binder and inorganic pigments without the growth of ice crystals during freezing that produce artifacts in direct imaging scanning electron microscopy (SEM) of fracture surfaces of frozen coatings. We show that by incorporating copolymerizable functional monomers, it is possible to achieve F/T stability in polymer latexes and in low-VOC paints, as judged by the microstructures revealed by the cryogenic SEM technique. Particle coalescence as well as pigment segregation in F/T unstable systems are visualized. In order to achieve F/T stability in paints, latex particles must not flocculate and should provide protection to inorganic pigment and extender particles. Because of the unique capabilities of the cryogenic SEM, we are able to separate the effects of freezing and thawing, and study the influence of the rate of freezing and thawing on F/T stability. Destabilization can be caused by either freezing or thawing. A slow freezing process is more detrimental to F/T stability than a fast freezing process; the latter actually preserves suspension stability during freezing. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, October 27–29, 2004 in Chicago, IL. Tied for first place in The John A. Gordon Best Paper Competition.  相似文献   

13.
Vismiones and ferruginins, representatives of a new class of lypophilic anthranoids from the genusVismia were found to inhibit feeding in larvae of species ofSpodoptera, Heliothis, and inLocusta migratoria.  相似文献   

14.
In 2002–2004, we examined the flight responses of 49 species of native and exotic bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) to traps baited with ethanol and/or (−)-α-pinene in the southeastern US. Eight field trials were conducted in mature pine stands in Alabama, Florida, Georgia, North Carolina, and South Carolina. Funnel traps baited with ethanol lures (release rate, about 0.6 g/day at 25–28°C) were attractive to ten species of ambrosia beetles (Ambrosiodmus tachygraphus, Anisandrus sayi, Dryoxylon onoharaensum, Monarthrum mali, Xyleborinus saxesenii, Xyleborus affinis, Xyleborus ferrugineus, Xylosandrus compactus, Xylosandrus crassiusculus, and Xylosandrus germanus) and two species of bark beetles (Cryptocarenus heveae and Hypothenemus sp.). Traps baited with (−)-α-pinene lures (release rate, 2–6 g/day at 25–28°C) were attractive to five bark beetle species (Dendroctonus terebrans, Hylastes porculus, Hylastes salebrosus, Hylastes tenuis, and Ips grandicollis) and one platypodid ambrosia beetle species (Myoplatypus flavicornis). Ethanol enhanced responses of some species (Xyleborus pubescens, H. porculus, H. salebrosus, H. tenuis, and Pityophthorus cariniceps) to traps baited with (−)-α-pinene in some locations. (−)-α-Pinene interrupted the response of some ambrosia beetle species to traps baited with ethanol, but only the response of D. onoharaensum was interrupted consistently at most locations. Of 23 species of ambrosia beetles captured in our field trials, nine were exotic and accounted for 70–97% of total catches of ambrosia beetles. Our results provide support for the continued use of separate traps baited with ethanol alone and ethanol with (−)-α-pinene to detect and monitor common bark and ambrosia beetles from the southeastern region of the US.  相似文献   

15.
It is well established that a wide range of drugs of abuse acutely boost the signaling of the sympathetic nervous system and the hypothalamic–pituitary–adrenal (HPA) axis, where norepinephrine and epinephrine are major output molecules. This stimulatory effect is accompanied by such symptoms as elevated heart rate and blood pressure, more rapid breathing, increased body temperature and sweating, and pupillary dilation, as well as the intoxicating or euphoric subjective properties of the drug. While many drugs of abuse are thought to achieve their intoxicating effects by modulating the monoaminergic neurotransmitter systems (i.e., serotonin, norepinephrine, dopamine) by binding to these receptors or otherwise affecting their synaptic signaling, this paper puts forth the hypothesis that many of these drugs are actually acutely converted to catecholamines (dopamine, norepinephrine, epinephrine) in vivo, in addition to transformation to their known metabolites. In this manner, a range of stimulants, opioids, and psychedelics (as well as alcohol) may partially achieve their intoxicating properties, as well as side effects, due to this putative transformation to catecholamines. If this hypothesis is correct, it would alter our understanding of the basic biosynthetic pathways for generating these important signaling molecules, while also modifying our view of the neural substrates underlying substance abuse and dependence, including psychological stress-induced relapse. Importantly, there is a direct way to test the overarching hypothesis: administer (either centrally or peripherally) stable isotope versions of these drugs to model organisms such as rodents (or even to humans) and then use liquid chromatography-mass spectrometry to determine if the labeled drug is converted to labeled catecholamines in brain, blood plasma, or urine samples.  相似文献   

16.
17.
18.
Glycidyl carbamate chemistry combines the excellent properties of polyurethanes with the crosslinking chemistry of epoxy resins. Glycidyl carbamate functional oligomers were synthesized by the reaction of polyfunctional isocyanate oligomers and glycidol. The oligomers were formulated into coatings with several amine functional crosslinkers at varying stoichiometric ratios and cured at different temperatures. Properties such as solvent resistance, hardness, and impact resistance were dependent on the composition and cure conditions. Most coatings had an excellent combination of properties. Studies were carried out to determine the kinetics of the curing reaction of the glycidyl carbamate functional oligomers with multifunctional and model amines. Detailed kinetic analysis of the curing reactions was also undertaken. The results indicated that the glycidyl carbamate functional group is more reactive than a glycidyl ether group. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, on October 27–29, 2004, in Chicago, IL.  相似文献   

19.
A highly moisture-proof polysilsesquioxane coating was obtained from a new bis-silylated precursor, which was synthesized from 3-aminopropyltriethoxysilane (APTES) and m-xylylene diisocyanate (m-XDI) in tetrahydrofuran (THF) and verified by 1H MAS NMR. For direct comparison purposes, an SiO2 coating was also prepared by the Stöber method using tetraethoxysilane (TEOS) as the reactant. Interestingly, the coating obtained from the polysilsesquioxane sol exhibited a much higher moisture resistance capability than its counterpart, which was attributed to its more compact feature between nanoparticles as characterized by N2 absorption experiment and transmission electron microscopy (TEM). Furthermore, its high transparency of about 92% showed potential for application in the protection of optical crystals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号