首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
微极流体向受热面的MHD驻点流动   总被引:1,自引:1,他引:0       下载免费PDF全文
分析了有均匀横向磁场作用时,导电微极流体垂直冲击受热面时形成的二维驻点流动问题.应用适当的相似转换,将连续、动量、角动量及热量的控制方程,及其相应的边界条件,简化为无量纲形式.然后,利用以有限差分离散化为基础的算法,求解简化了的自相似非线性方程.用Richardson外推法,进一步求精其结果.以图表形式表示磁场参数、微极性参数、Prandtl数对流动和温度场的影响,说明了其解的重要特性.研究表明,随着磁场参数的增大,速度和热边界层厚度变小了.与Newton流体相比较,微极流体的剪应力和传热率出现明显的减少,这对聚合物生产过程中流体的流动和热量控制是有益的.  相似文献   

2.
研究等宽管道中,磁场、可渗透壁面、Darcy速度和滑动参数,对流体稳定流动的综合影响.假设管道中流动的流体是均匀的、不可压缩的Newton流体.利用Beavers-Joseph滑动边界条件,得到控制方程的解析解.详细地讨论了磁场、可渗透性、Darcy速度和滑动参数对轴向速度、滑动速度和剪应力的影响.可以看出,Hartmann数、Darcy速度、多孔参数和滑动参数,在改变流动方向,进而改变剪应力方面,起着至关重要的作用.  相似文献   

3.
对流经无限竖直多孔平板的不可压缩粘性导电流体,稳定的传热传质混合对流MHD流动问题,给出了精确解和数值解.假定均匀磁场横向作用于流动方向,考虑了感应磁场及其能量的粘性和磁性损耗.多孔平板有恒定的吸入速度并均匀地混入流动速度.用摄动技术和数值方法求解控制方程.得到了平板上速度场、温度场、感应磁场、表面摩擦力和传热率的分析表达式.相关参数取不同数值时,用图形表示出问题的数值结果.讨论了从平板到流体的Hartmann数、化学反应参数、磁场的Prandtl数,以及包括速度场、温度场、浓度场和感应磁场等其它参数的影响.可以发现,热源/汇或Eckert数的增大,极大地提高了流体的速度值.x-方向的感应磁场随着Hartmann数、磁场的Prandtl数、热源/汇和粘性耗散的增大而增大.但是,研究表明,随着破坏性化学反应(K0)的增大,流动速度、流体温度和感应磁场将减小.对色谱分析系统和材料加工的磁场控制,该研究在热离子反应堆模型、电磁感应、磁流体动力学传输现象中得到了应用.  相似文献   

4.
利用生物磁流体动力学(BFD)原理,在生物磁流体经由遭受磁场作用的多孔介质时,研究其流动的基本理论.所研究流体的磁化强度随温度而变化.流体被认为是非Newton流体,其流动由二阶梯度流体方程所控制,并考虑了流体的粘弹性效应.假设管道壁是能够伸展的,管壁表面的速度与到坐标原点的纵向距离成正比.首先将问题简化为包括7个参数的、耦合的非线性微分方程组的求解.将血液看作生物磁流体,并用上述方法分析,目的是计算某些血液的流动参数,并配以适当的数值方法,导数用差分格式近似.计算结果用图形给出,从而在磁场作用下,得到过热状态中关系血液的、血流动力学流动的理论预测.结果清楚地表明,在电磁过热治疗进程期间,磁偶极子对动脉中血液流动特征的影响起着重大作用.该研究引起了临床医学的关注,其结果有益于癌症病人采用电磁过热的治疗.  相似文献   

5.
在横向磁场作用下,不可压缩的粘性导电流体,流经一个半无限的竖板,完成了壁面温度变化对磁流体动力学流动的分析.假定由粘性耗散和感应磁场产生的热量可以忽略不计.无量纲的控制方程为二维非稳态耦合的非线性方程.结果显示,磁场参数对空气和水的速度有着抑制作用.  相似文献   

6.
两个平行的无限大多孔圆盘,圆盘表面有均匀注入时,数值地研究圆盘间不可压缩导电微极流体,在横向外加磁场作用下的轴对称稳定层流.运用von Krmn的相似变换,将非线性运动的控制方程转化为无量纲形式.使用基于有限差分格式的算法,在相应的边界条件下,求解简化后耦合的常微分方程组.讨论Reynolds数、磁场参数、微极参数和Prandtl数,对流动速度和温度分布的影响.在特殊情况下,所得结果与已有文献的工作有着很好的一致性.研究表明,圆盘表面的传热率随着Rynolds数、磁场参数和Prandtl数的增加而增加;剪切应力随着注入的增加而减少,但它随着外部磁场的加强而增加.和Newton流体相比较,微极流体的剪切应力因素较弱,有利于聚合体加工过程中流动和温度的控制.  相似文献   

7.
分析了微极流体朝向加热伸展平面的磁流体动力学(MHD)驻点流动,考虑了粘性耗散和内部产热/吸热对流动的影响.讨论了指定表面温度(PST)和指定热通量(PHF)两种情况,采用同伦分析方法(HAM)求解边界层流动和能量方程.通过图表的显示,研究了感兴趣物理量的变化.注意到高伸展参数时解的存在与外加应用磁场密切相关.  相似文献   

8.
利用微分约束方法研究了二阶流体的精确解,通过使用一阶微分约束条件,不仅获得了具有抽吸作用下的Couette和Poiseuille平行流、碰撞射流、平面拉伸流等具有明确物理意义的流动解,而且获得了两类新的精确解,所得精确解表明二阶流体的流动特性不仅依赖于物质粘性参数,而且依赖物质弹性参数.此外讨论了部分边值问题.  相似文献   

9.
研究了二阶导电的非Newton流体,在一个可径向放射状延伸,并伴有部分滑动表面上的流动及其热交换.部分滑移用一个无量纲的滑移因子控制,其取值范围从0(全黏着)到无穷大(全滑移).使用适当的相似变换,把待求的非线性偏微分方程转化为常微分方程.讨论了边界条件的不足,在无需增加任何边界条件下,使用有效的数值格式,求解所得到的微分方程.部分滑移、磁场交互参数以及二阶流体的参数对速度场和温度场的综合分析发现,滑移量的增加,流体的动力边界层和热边界层增厚.因为当滑移量的增加,允许更多的流体通过该平面,表面摩擦因数的数值下降,并在更高的滑移参数下,摩擦因数趋于0,即流体无黏性地通过.还研究了磁场对速度场和温度场的重要影响.  相似文献   

10.
研究了非稳态Maxwell流体斜撞击轴向余弦振荡圆柱的斜驻点流动.首先,基于斜驻点流动特性,在柱面坐标系下求得关于压力的二阶常微分方程,对压强进行修正,建立了非稳态Maxwell流体在振荡圆柱上斜驻点流动的边界层模型.接着,合理的相似变换将模型转化,使用Chebyshev谱方法求得模型的数值解.结果表明,在贴近圆柱表面的流体随着圆柱体做周期性运动;圆柱的曲率越大越会使在同一时刻同一位置处的流体质点的速度越大;相反,非稳态参数及流体的记忆特性也会在更靠近圆柱壁面处阻碍流体流动.  相似文献   

11.
The non axisymmetric motion produced by a buoyancy-induced secondary flow of a viscoelastic fluid over an infinite rotating disk in a verticalplane with a magnetic field applied normal to the disk has been studied.The governing Navier Stokes equations and the energy equation admit a self similar solution. The system of ordinary differential equations has been solved numerically using Runge-Kutta Gill subroutine.The turning moment for the viscoelastic fluid is found to be less than that of the Newtonian fluid but the turning moment is increased due to the magnetic parameter. The resultant force due to the buoyancy-induced secondary flow increases with the magnetic parameter but reduces as the viscoelastic parameter increases. The quantity of fluid, which is pumped outwards due to the centrifuging action of the disk, for the viscoelastic fluid is more than that of the Newtonian fluid. The buoyancy-induced secondary flow boundary layer is much thicker than the primary boundary layer thickness. The thermal boundary layer due to the primary flow increases with the magnetic parameter decreases as the viscoelastic parameter increases. The heat transfer increases with the viscoelastic parameter but decreases as the magnetic parameter increases. The effect of the viscoelastic parameter is more pronounced on the secondary flow than on the primary flow.  相似文献   

12.
An analysis has been carried out to study the flow and heat transfer characteristics for MHD viscoelastic boundary layer flow over an impermeable stretching sheet with space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink), viscous dissipation, thermal radiation and magnetic field due to frictional heating. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied vertically in the flow region. The governing partial differential equations for the flow and heat transfer are transformed into ordinary differential equations by a suitable similarity transformation. The governing equations with the appropriate conditions are solved exactly. The effects of viscoelastic parameter and magnetic parameter on skin friction and the effects of viscous dissipation, non-uniform heat source/sink and the thermal radiation on heat transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the prescribed wall heat flux (PHF) case are presented graphically and discussed. The numerical results for the wall temperature gradient (the Nusselt number) are presented in tables and are discussed.  相似文献   

13.
An analysis has been carried out to study the momentum and heat transfer characteristics in an incompressible electrically conducting non-Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly non-linear coupled ordinary differential equations by similarity transformations. The effect of variable fluid viscosity, Magnetic parameter, Prandtl number, variable thermal conductivity, heat source/sink parameter and thermal radiation parameter are analyzed for velocity, temperature fields, and wall temperature gradient. The resultant coupled highly non-linear ordinary differential equations are solved numerically by employing a shooting technique with fourth order Runge–Kutta integration scheme. The fluid viscosity and thermal conductivity, respectively, assumed to vary as an inverse and linear function of temperature. The analysis reveals that the wall temperature profile decreases significantly due to increase in magnetic field parameter. Further, it is noticed that the skin friction of the sheet decreases due to increase in the Magnetic parameter of the flow characteristics.  相似文献   

14.
This paper presents the study of momentum and heat transfer characteristics in a hydromagnetic flow of viscoelastic liquid over a stretching sheet with non-uniform heat source, where the flow is generated due to a linear stretching of the sheet and influenced by uniform magnetic field applied vertically. Here an analysis has been carried out to study the effect of magnetic field on the visco-elastic liquid flow and heat transfer over a stretching sheet with non-uniform heat source. The non-linear boundary layer equation for momentum is converted into ordinary differential equation by means of similarity transformation and is solved exactly. Heat transfer differential equation is also solved analytically. The effect of magnetic field on velocity, skin friction and temperature profiles are presented graphically and discussed.  相似文献   

15.
Of concern in this paper is an investigation of biomagnetic flow of a non-Newtonian viscoelastic fluid over a stretching sheet under the influence of an applied magnetic field generated owing to the presence of a magnetic dipole. The viscoelasticity of the fluid is characterised by Walter’s B fluid model. The applied magnetic field has been considered to be sufficiently strong to saturate the ferrofluid. The magnetization of the fluid is considered to vary linearly with temperature as well as the magnetic field intensity. The theoretical treatment of the physical problem consists of reducing it to solving a system of non-linear coupled differential equations that involve six parameters, which are solved by developing a finite difference technique. The velocity profile, the skin-friction, the wall pressure and the rate of heat transfer at the sheet are computed for a specific situation. The study shows that the fluid velocity increases as the rate of heat transfer decreases, while the local skin-friction and the wall pressure increase as the magnetic field strength is increased. It is also revealed that fluid viscoelasticity has an enhancing effect on the local skin-friction. The study will have an important bearing on magnetic drug targeting and separation of red cells as well as on the control of blood flow during surgery.  相似文献   

16.
The flow and heat transfer characteristics for a continuous moving surface in a viscoelastic fluid are investigated. Constitutive equations of viscoelastic fluid obey the second‐grade model. Analytic expressions to velocity and temperature have been developed by employing homotopy analysis method. The criterion to the convergence of the solution is properly discussed. Furthermore, the values of skin friction coefficient and the local Nusselt number have been computed and discussed. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

17.
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid over a flat sheet with a linear velocity in the presence of thermal radiation and non-uniform heat source. The thermal conductivity is assumed to vary as a linear function of temperature. The basic equations governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed equations are solved analytically by regular perturbation method. Numerical solution of the problem is also obtained by the efficient shooting method, which agrees well with the analytical solution. The effects of various physical parameters such as viscoelastic parameter, Chandrasekhar number, Prandtl number, variable thermal conductivity parameter, Eckert number, thermal radiation parameter and non-uniform heat source/sink parameters which determine the temperature profiles are shown in several plots and the heat transfer coefficient is tabulated for a range of values of said parameters. Some important findings reported in this work reveals that combined effect of variable thermal conductivity, radiation and non-uniform heat source have significant impact in controlling the rate of heat transfer in the boundary layer region.  相似文献   

18.
The steady laminar magnetohydrodynamic (MHD) boundary-layer flow past a wedge with constant surface heat flux immersed in an incompressible micropolar fluid in the presence of a variable magnetic field is investigated in this paper. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables, and then they are solved numerically by means of an implicit finite-difference scheme known as the Keller-box method. Numerical results show that micropolar fluids display drag reduction and consequently reduce the heat transfer rate at the surface, compared to the Newtonian fluids. The opposite trends are observed for the effects of the magnetic field on the fluid flow and heat transfer characteristics.  相似文献   

19.
In this paper, we analyze the flow and heat transfer characteristics of a magnetohydrodynamic (MHD) viscoelastic fluid in a parallel plate channel with a stretching wall. Homotopy analysis method (HAM) is used to obtain analytical solutions of the governing nonlinear differential equations. The analytical solutions are obtained in the form of infinite series and the convergence of the series solution is discussed explicitly. The obtained results are presented through graphs for several sets of values of the parameters, and the salient features of the solutions are analyzed. A comparison of our HAM results (for a special case of the study) with the available results in the literature (obtained by other methods) shows that our results are accurate for a wide range of parameters. Further, we point that our analysis finds application to the study of the haemodynamic flow of blood in the cardiovascular system subject to external magnetic field.  相似文献   

20.
In this present article an analysis is carried out to study the boundary layer flow behavior and heat transfer characteristics in Walter’s liquid B fluid flow. The stretching sheet is assumed to be impermeable, the effects of viscous dissipation, non-uniform heat source/sink in the presence and in the absence of elastic deformation (which was escaped from attention of researchers while formulating the viscoelastic boundary layer flow problems)on heat transfer are addressed. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. Analytical solutions are obtained for the resulting boundary value problems. The effects of viscous dissipation, Prandtl number, Eckert number and non-uniform heat source/sink on heat transfer (in the presence and in the absence of elastic deformation) are shown in several plots and discussed. Analytical expressions for the wall frictional drag coefficient, non-dimensional wall temperature gradient and non-dimensional wall temperature are obtained and are tabulated for various values of the governing parameters. The present study reveals that, the presence of work done by deformation in the energy equation yields an augment in the fluid’s temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号