首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Because of biodegradability and nontoxicity biodiesel has become more attractive as alternative fuel. Biodiesel is produced mainly from vegetable oils by transesterification of triacylglycerols. From economic and social reasons, edible oils should be replaced by lower-cost and reliable feedstocks for biodiesel production such as non-edible plant oils. This paper reviews various methods for biodiesel production from common non-edible oils employing alcoholysis reactions. The aim of this paper is to present the possibilities of the use of non-edible oils into biodiesel production, to consider the various methods for treatment of non-edible oils and to emphasize the influence of the operating and reaction conditions on the process rate and the ester yield. The special attention is paid to the possibilities of optimization, kinetics and improvement of biodiesel production from non-edible oils.  相似文献   

2.
In view of the fast depletion of fossil fuel, the search for alternative fuels has become inevitable, looking at huge demand of diesel for transportation sector, captive power generation and agricultural sector, the biodiesel is being viewed a substitute of diesel. The vegetable oils, fats, grease are the source of feedstocks for the production of biodiesel. Significant work has been reported on the kinetics of transesterification of edible vegetable oils but little work is reported on non-edible oils. Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstocks for biodiesel production in India and limited work is reported on the kinetics of transesterification of high FFA containing oil. The present study reports a review of kinetics of biodiesel production. The paper also reveals the results of kinetics study of two-step acid–base catalyzed transesterification process carried out at pre-determined optimum temperature of 65 and 50 °C for esterification and transesterification process, respectively, under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H2SO4 and NaOH and 400 rpm of stirring. The yield of methyl ester (ME) has been used to study the effect of different parameters. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. This is the first study of its kind dealing with simplified kinetics of two-step acid–base catalyzed transesterification process carried at optimum temperature of both the steps which took about 6 h for complete conversion of TG to ME.  相似文献   

3.
Recent concerns over the environment, increasing fuel prices and scarcity of its supply have promoted the interest in development of the alternative sources for petroleum fuels. At present, biodiesel is commercially produced from the refined edible vegetable oils such as sunflower oil, palm oil and soybean oil, etc. by alkaline-catalyzed esterification process. This process is not suitable for production of biodiesel from many unrefined non-edible vegetable oils because of their high acid value. Hence, a two-step esterification method is developed to produce biodiesel from high FFA vegetable oils. The biodiesel production method consists of acid-catalyzed pretreatment followed by an alkaline-catalyzed transesterification. The important properties of methyl esters of rubber seed oil are compared with other esters and diesel. Pure rubber seed oil, diesel and biodiesel are used as fuels in the compression ignition engine and the performance and emission characteristics of the engine are analyzed. The lower blends of biodiesel increase the brake thermal efficiency and reduce the fuel consumption. The exhaust gas emissions are reduced with increase in biodiesel concentration. The experimental results proved that the use of biodiesel (produced from unrefined rubber seed oil) in compression ignition engines is a viable alternative to diesel.  相似文献   

4.
The aim of this research is to present the possibilities of the use of non-edible oils in biodiesel production, to consider the various methods for treatment of non-edible oils and to emphasise the influence of the operating and reaction conditions on the process rate and the ester yield. Because of biodegradability and non-toxicity biodiesel has become more attractive as alternative fuel. Biodiesel is produced mainly from vegetable oils by transesterification. For economic and social reasons, edible oils should be replaced by lower-cost and reliable feedstock for biodiesel production, such as non-edible plant oils. In this work biodiesel is produced from neem and Karanja by using butanol, propanol, ethanol and methanol as alcohols and KOH and NaOH as alkali catalysts by the transesterification process. The aim of this research is to analyse the different reaction parameters such as catalyst concentration, type of catalyst, types of alcohol, alcohol to oil molar ratio, reaction time and reaction temperature on the yield of biodiesel from non-edible oils. The maximum yield obtained was 95% with Karanja as oil with methanol and KOH as alkali catalyst at oil to alcohol molar ratio of 6:1 in 1 h at 60°C. Special attention is paid to the possibilities of producing biodiesel from non-edible oils.  相似文献   

5.
Biodiesel is a diesel replacement and renewable fuel that is manufactured from vegetable oils, animal fats or waste cooking oils. The production of biodiesel from edible oil is currently much more expensive than hydrocarbon-based fuel, due to the relatively high cost of edible oils. The cost of biodiesel can be reduced by using non-edible oils instead of edible oils. The purpose of the present study was to develop a method of esterification of non-edible oil like rubber seed oil (Hevea brasiliensis). The high free fatty acid content oil reacts quickly with alkaline catalysts to form soap, which prevents the separation of biodiesel and glycerol. A two-step process was used instead of the simple alkaline catalysed transesterification process. It consisted of an acid catalysed pre-processing followed by the usual alkaline catalysed process. The physical and chemical properties of biodiesel were analysed. The quantification of methyl esters were done by high-performance liquid chromatography.  相似文献   

6.
As an alternative fuel for compression ignition engines, plant oils are in principle renewable and carbon-neutral. However, their use raises technical, economic and environmental issues. A comprehensive and up-to-date technical review of using both edible and non-edible plant oils (either pure or as blends with fossil diesel) in CI engines, based on comparisons with standard diesel fuel, has been carried out. The properties of several plant oils, and the results of engine tests using them, are reviewed based on the literature. Findings regarding engine performance, exhaust emissions and engine durability are collated. The causes of technical problems arising from the use of various oils are discussed, as are the modifications to oil and engine employed to alleviate these problems. The review shows that a number of plant oils can be used satisfactorily in CI engines, without transesterification, by preheating the oil and/or modifying the engine parameters and the maintenance schedule. As regards life-cycle energy and greenhouse gas emission analyses, these reveal considerable advantages of raw plant oils over fossil diesel and biodiesel. Typical results show that the life-cycle output-to-input energy ratio of raw plant oil is around 6 times higher than fossil diesel. Depending on either primary energy or fossil energy requirements, the life-cycle energy ratio of raw plant oil is in the range of 2–6 times higher than corresponding biodiesel. Moreover, raw plant oil has the highest potential of reducing life-cycle GHG emissions as compared to biodiesel and fossil diesel.  相似文献   

7.
Owing to unstable diesel fuel prices in the world market, many farmers have been looking for alternative fuels. Vegetable oils are one of the alternatives, which can be used as fuel in diesel engines either in the form of straight vegetable oil or in the form of biodiesel. This study aims to present experimental data by utilization of home and industrial biodiesel as fuel in an agricultural tractor diesel engine. The home biodiesel production was made from different vegetable oils (crude rapeseed, edible sunflower and waste oil) with the process of one‐stage‐based catalyzed transesterification. A commercially available agricultural tractor ZETOR 7745 was employed. Measurements were taken on the power take‐off shaft by electrical dynamometer FROMENT XT200. According to the results, agricultural tractor diesel engine operating on home biodiesel fuels had better performance characteristics related to industrially produced biodiesel and similar to conventional diesel fuel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process and pollutant formation. Biodiesel is known as the mono-alkyl-esters of long chain fatty acids derived from renewable feedstocks, such as, vegetable oils or animal fats, for use in compression ignition engines. Different parameters for the optimization of biodiesel production were investigated in the first phase of this study, while in the next phase of the study performance test of a diesel engine with neat diesel fuel and biodiesel mixtures were carried out. Biodiesel was made by the well known transesterification process. Cottonseed oil (CSO) was selected for biodiesel production. Cottonseed is non-edible oil, thus food versus fuel conflict will not arise if this is used for biodiesel production. The transesterification results showed that with the variation of catalyst, methanol or ethanol, variation of biodiesel production was realized. However, the optimum conditions for biodiesel production are suggested in this paper. A maximum of 77% biodiesel was produced with 20% methanol in presence of 0.5% sodium hydroxide. The engine experimental results showed that exhaust emissions including carbon monoxide (CO) particulate matter (PM) and smoke emissions were reduced for all biodiesel mixtures. However, a slight increase in oxides of nitrogen (NOx) emission was experienced for biodiesel mixtures.  相似文献   

9.
Biodiesel has high potential as a new and renewable energy source in the future, as a substitution fuel for petroleum-derived diesel and can be used in existing diesel engine without modification. Currently, more than 95% of the world biodiesel is produced from edible oil which is easily available on large scale from the agricultural industry. However, continuous and large-scale production of biodiesel from edible oil without proper planning may cause negative impact to the world, such as depletion of food supply leading to economic imbalance. A possible solution to overcome this problem is to use non-edible oil or waste edible oil (WEO). In this context, the next question that comes in mind would be if the use of non-edible oil overcomes the short-comings of using edible oil. Apart from that, if WEO were to be used, is it sufficient to meet the demand of biodiesel. All these issues will be addressed in this paper by discussing the advantages and disadvantages of using edible oil vs. non-edible vs. WEO as feedstock for biodiesel production. The discussion will cover various aspects ranging from oil composition, oil yield, economics, cultivation requirements, land availability and also the resources availability. Finally, a proposed solution will be presented.  相似文献   

10.
Abstract

Biodiesel is a renewable fuel that can be produced from vegetable oils, animal fats, and used cooking oil including triglycerides. Biodiesel, an alternative biodegradable diesel fuel, is derived from triglycerides by transesterification with methanol and ethanol. Concerns about the depletion of diesel fuel reserves and the pollution caused by continuously increasing energy demands make biodiesel an attractive alternative motor fuel for compression ignition engines. There are four different ways of modifying vegetable oils and fats to use them as diesel fuel, such as pyrolysis (thermal cracking), dilution with hydrocarbons (blending), emulsification and transesterification. The most commonly used process is transesterification of vegetable oils and animal fats. The transesterification reaction is affected by molar ratio of glycerides to alcohol, catalysts, reaction temperature, reaction time and free fatty acids and water content of oils or fats. In the transesterification, free fatty acids and water always produce negative effects, since the presence of free fatty acids and water causes soap formation, consumes catalyst and reduces catalyst effectiveness, all of which result in a low conversion. Biodiesel has over double the price of diesel. The high price of biodiesel is in large part due to the high price of the feedstock.  相似文献   

11.
The increasing industrialization and modernization of the world has to a steep rise for the demand of petroleum products. Economic development in developing countries has led to huge increase in the energy demand. In India, the energy demand is increasing at a rate of 6.5% per annum. The crude oil demand of the country is met by import of about 80%. Thus the energy security has become a key issue for the nation as a whole. Petroleum-based fuels are limited. The finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these reserves are facing foreign exchange crises, mainly due to the import of crude oil. Hence it is necessary to look forward for alternative fuels, which can be produced from feedstocks available within the country.Biodiesel, an ecofriendly and renewable fuel substitute for diesel has been getting the attention of researchers/scientists of all over the world. The R & D has indicated that up to B20, there is no need of modification and little work is available related to suitability and sustainability of biodiesel production from Jatropha as non-edible oil sources. In addition, the use of vegetable oil as fuel is less polluting than petroleum fuels. The basic problem with biodiesel is that it is more prone to oxidation resulting in the increase in viscosity of biodiesel with respect to time which in turn leads to piston sticking, gum formation and fuel atomization problems.The report is an attempt to present the prevailing fossil fuel scenario with respect to petroleum diesel, fuel properties of biodiesel resources for biodiesel production, processes for its production, purification, etc. Lastly, an introduction of stability of biodiesel will also be presented.  相似文献   

12.
The petroleum fuels play a major role in industry, agriculture, and transport besides meeting out many other basic human needs. However, fossil fuels are limited in quantity and are depleting day by day as the consumption is increasing very rapidly. Biodiesel is one such fuel in which there is a lot of hope. In the recent past, biodiesel received considerable attention as a renewable fuel. In India, it has not been possible to produce biodiesel from edible oils since the same is very scarce. Hence, the scope of opting to non-edible oils from plants as raw material for biodiesel production recently gained momentum. This paper presents the production of biodiesel from nonedible, Neochloris oleoabundans oil and its characterization. The studies were carried out on transesterification of oil with methanol, sodium hydroxide, and Sodium methoxide as catalyst for the production of biodiesel. The process parameters such as catalyst concentration, reaction time, and reaction temperature were optimized for the production of Neochloris oleoabundans oil biodiesel. The biodiesel yield of 95.15% was noticed at optimal process parameters.  相似文献   

13.
Vegetable oils are a promising alternative among the different diesel fuel alternatives. However, the high viscosity, poor volatility and cold flow characteristics of vegetable oils can cause some problems such as injector coking, severe engine deposits, filter gumming, piston ring sticking and thickening of lubrication oil from long-term use in diesel engines. These problems can be eliminated or minimized by transesterification of the vegetable oils to form monoesters. These monoesters are known as biodiesel. The important advantages of biodiesel are lower exhaust gas emissions and its biodegradability and renewability compared with petroleum-based diesel fuel. Although the transesterification improves the fuel properties of vegetable oil, the viscosity and volatility of biodiesel are still worse than that of petroleum diesel fuel. The energy of the biodiesel can be released more efficiently with the concept of low heat rejection (LHR) engine. The aim of this study is to apply LHR engine for improving engine performance when biodiesel is used as an alternative fuel. For this purpose, a turbocharged direct injection (DI) diesel engine was converted to a LHR engine and the effects of biodiesel (produced from sunflower oil) usage in the LHR engine on its performance characteristics have been investigated experimentally. The results showed that specific fuel consumption and the brake thermal efficiency were improved and exhaust gas temperature before the turbine inlet was increased for both fuels in the LHR engine.  相似文献   

14.
《Biomass & bioenergy》2005,28(1):77-86
Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines.In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends.  相似文献   

15.
As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available resources that have come to the forefront recently. In this paper, a detailed review has been conducted to highlight different related aspects to biodiesel industry. These aspects include, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodiesel, the economical viability and finally the future of biodiesel. The literature reviewed was selective and critical. Highly rated journals in scientific indexes were the preferred choice, although other non-indexed publications, such as Scientific Research and Essays or some internal reports from highly reputed organizations such as International Energy Agency (IEA), Energy Information Administration (EIA) and British Petroleum (BP) have also been cited. Based on the overview presented, it is clear that the search for beneficial biodiesel sources should focus on feedstocks that do not compete with food crops, do not lead to land-clearing and provide greenhouse-gas reductions. These feedstocks include non-edible oils such as Jatropha curcas and Calophyllum inophyllum, and more recently microalgae and genetically engineered plants such as poplar and switchgrass have emerged to be very promising feedstocks for biodiesel production.It has been found that feedstock alone represents more than 75% of the overall biodiesel production cost. Therefore, selecting the best feedstock is vital to ensure low production cost. It has also been found that the continuity in transesterification process is another choice to minimize the production cost. Biodiesel is currently not economically feasible, and more research and technological development are needed. Thus supporting policies are important to promote biodiesel research and make their prices competitive with other conventional sources of energy. Currently, biodiesel can be more effective if used as a complement to other energy sources.  相似文献   

16.
The world today is faced with serious global warming and environmental pollution. Besides, fossil fuel will become rare and faces serious shortage in the near future. This has triggered the awareness to find alternative energy as their sustainable energy sources. Biodiesel as a cleaner renewable fuel has been considered as the best substitution for diesel fuel due to it being used in any compression ignition engine without any modification. The main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions. This paper reviews the production, performance and emission of palm oil, Jatropha curcas and Calophyllum inophyllum biodiesel. Palm oil is one of the most efficient oil bearing crops in terms of oil yield, land utilization, efficiency and productivity. However, competition between edible oil sources as food with fuel makes edible oil not an ideal feedstock for biodiesel production. Therefore, attention is shifted to non-edible oil like Jatropha curcas and Calophyllum inophyllum. Calophyllum inophyllum oil can be transesterified and being considered as a potential biodiesel fuel. Compared to Palm oil and Jatropha biodiesel industry, biodiesel from Calophyllum inophyllum is still in a nascent state. Therefore, long term endurance research and tribological studies need to be carried out before Calophyllum inophyllum oil base biodiesel can become an alternative fuel in future.  相似文献   

17.
In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engine [Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111–33. [1]; Vellguth G. Performance of vegetable oils and their monoesters as fuels for diesel engines. SAE 831358, 1983. [2]; Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Int J Prog Energy Combust Sci 2005;31:466–87. [3]; Jajoo BN, Keoti RS. Evaluation of vegetable oils as supplementary fuels for diesel engines. In: Proceedings of the XV national conference on IC engines and combustion, Anna University Chennai, 1997. [4]; Altin R, Cetinkaya S, Yucesu HS. The potential of using vegetable oil fuels as fuel for diesel engines. Int J Energy Convers Manage 2000;42:529–38, 248. [5]; Gajendra Babu MK, Chandan Kumar Das LM. Experimental investigations on a Karanja oil methyl ester fuelled DI diesel engine. SAE 2006-01-0238, 2006. [6]; Agarwal D, Kumar Agarwal A. Performance and emission characteristics of a Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Int J Appl Therm Eng 2007;27:2314–23. [7]]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engine has limited applications due to higher domestic requirement [Scholl Kyle W, Sorenson Spencer C. Combustion Analysis of soyabean oil methyl ester in a direct injection diesel engine. SAE 930934, 1993. [8]; Nwafor OMI. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines. Int J Renew Energy 2000;21:433–44. [9]; Nwafor OMI. The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions. Renew Energy 2003;28:171–81. [10]]. In view of this, Honge oil (Pongamia Pinnata Linn) being non-edible oil could be regarded as an alternative fuel for CI engine applications. The viscosity of Honge oil is reduced by transesterification process to obtain Honge oil methyl ester (HOME).Gasification is a process in which solid biomass is converted into a mixture of combustible gases, which complete their combustion in an IC engine. Hence, producer gas can act as a promising alternative fuel, especially for diesel engines by substituting considerable amount of diesel fuels. Downdraft moving bed gasifiers coupled with IC engine are a good choice for moderate quantities of available biomass, up to 500 kW of electric power. Hence, bioderived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted for improving their performance.  相似文献   

18.
《Biomass & bioenergy》2005,28(1):87-93
There is an increasing interest in many countries to search for suitable alternative fuels that are environment friendly. Although straight vegetable oils can be used in diesel engines, their high viscosities, low volatilities and poor cold flow properties have led to the investigation of various derivatives. Biodiesel is a fatty acid alkyl ester, which can be derived from any vegetable oil by transesterification. Biodiesel is a renewable, biodegradable and non-toxic fuel. In this study, Mahua oil (Madhuca indica seed oil) was transesterified with methanol using sodium hydroxide as catalyst to obtain mahua oil methyl ester. This biodiesel was tested in a single cylinder, four stroke, direct injection, constant speed, compression ignition diesel engine (Kirloskar) to evaluate the performance and emissions.  相似文献   

19.
Biofuel has got tremendous attraction for the last decade as an alternative source of energy. Bioethanol and biodiesel are two main products of first generation biofuel. Biodiesel is chemically fatty acid methyl esters prepared from various edible and non-edible oils. It has been used as a substitute to mineral diesel during the last decade. This review is about generation, transesterification, factors affecting transesterification, catalysts (homogeneous and heterogeneous) and physico-chemical characterization of biodiesel by chromatographic and spectroscopic techniques. The alkaline homogeneous catalysts (NaOH or KOH) have been used on commercial scale for production of biodiesel because these are cheap and reaction occurs in less time. The heterogeneous catalysts such as metal oxides, e.g., CaO, MgO, SrO, ZnO, La2O3, Mg–Al hydrolalcite have been used for transesterification of vegetable oil due to their easy separation and reuse but these catalysts take more time for completion of reaction. The yield of biodiesel may be affected by alcohol/oil ratio, concentration of catalyst, time required for reaction, temperature free fatty acid moisture. The prepared biodiesel has been characterized by chromatographic techniques like gas chromatography, gas chromatography–mass spectroscopy, high performance liquid chromatography and spectroscopic techniques like nuclear magnetic resonance and infrared spectroscopy.  相似文献   

20.
Progress in biodiesel processing   总被引:3,自引:0,他引:3  
Biodiesel is a notable alternative to the widely used petroleum-derived diesel fuel since it can be generated by domestic natural sources such as soybeans, rapeseeds, coconuts, and even recycled cooking oil, and thus reduces dependence on diminishing petroleum fuel from foreign sources. The injection and atomization characteristics of the vegetable oils are significantly different than those of petroleum-derived diesel fuels, mainly as the result of their high viscosities. Modern diesel engines have fuel-injection system that is sensitive to viscosity change. One way to avoid these problems is to reduce fuel viscosity of vegetable oil in order to improve its performance. The conversion of vegetable oils into biodiesel is an effective way to overcome all the problems associated with the vegetable oils. Dilution, micro-emulsification, pyrolysis, and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Transesterification is the most common method and leads to monoalkyl esters of vegetable oils and fats, now called biodiesel when used for fuel purposes. The methyl ester produced by transesterification of vegetable oil has a high cetane number, low viscosity and improved heating value compared to those of pure vegetable oil which results in shorter ignition delay and longer combustion duration and hence low particulate emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号