首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The type I restriction-modification system EcoR124I recognizes and binds to the split DNA recognition sequence 5'-GAAN(6)RTCG-3'. The methyltransferase, consisting of HsdM and HsdS subunits with the composition M2S, can interact with one or more subunits of the HsdR subunit to form the endonuclease. The interaction of the methyltransferase with HsdR has been investigated by surface plasmon resonance, showing that there are two non-equivalent binding sites for HsdR which differ in binding affinity by at least two orders of magnitude. DNA footprinting experiments using Exonuclease III suggest that the addition of HsdR to the methyltransferase (at a stoichiometry of either 1:1 or 2:1) increases the stability of the resulting DNA-protein complex but does not increase the size of the footprint. More extensive in situ footprinting experiments using copper-phenanthroline on the DNA-protein complexes formed by M2S, R1M2S and R2M2S also show no difference in the detailed cleavage pattern, with approximately 18 nucleotides protected on both strands in each complex. Thus the HsdR subunit(s) of the endonuclease stabilise the interaction of the M2S complex with DNA, but do not directly contribute to DNA binding. In addition, the thymidine nucleotide in the tetranucleotide recognition sequence GTCG is hyper-reactive to cleavage in each case, suggesting that the DNA structure in this region is altered in these complexes.  相似文献   

2.
Type I restriction-modification (R-M) enzymes are composed of three different subunits, of which HsdS determines DNA specificity, HsdM is responsible for DNA methylation and HsdR is required for restriction. The HsdM and HsdS subunits can also form an independent DNA methyltransferase with a subunit stoichiometry of M2S1. We found that the purified Eco R124I R-M enzyme was a mixture of two species as detected by the presence of two differently migrating specific DNA-protein complexes in a gel retardation assay. An analysis of protein subunits isolated from the complexes indicated that the larger species had a stoichiometry of R2M2S1and the smaller species had a stoichiometry of R1M2S1. In vitro analysis of subunit assembly revealed that while binding of the first HsdR subunit to the M2S1complex was very tight, the second HsdR subunit was bound weakly and it dissociated from the R1M2S1complex with an apparent K d of approximately 2.4 x 10(-7) M. Functional assays have shown that only the R2M2S1complex is capable of DNA cleavage, however, the R1M2S1complex retains ATPase activity. The relevance of this situation is discussed in terms of the regulation of restriction activity in vivo upon conjugative transfer of a plasmid-born R-M system into an unmodified host cell.  相似文献   

3.
The SfiI endonuclease has to interact with two copies of its recognition sequence before it can cleave DNA. To demonstrate that the reaction of SfiI on a DNA with two sites involves the formation of a DNA loop, and to characterise the looping interactions on supercoiled and linear DNA, a series of plasmids was constructed with lengths of DNA between two SfiI sites varying from 104 to 211 bp. Both supercoiled and linear forms of each DNA were tested as substrates for SfiI. The reactions were monitored from the rates of DNA cleavage and from the generation of partially cleaved products, the latter indicating loop disruption before cleavage of both sites. On both supercoiled and linear DNA, the stabilities of the complexes spanning two SfiI sites varied in sinusoidal fashion with the distance between the sites, in the manner characteristic of a process governed by the helical periodicity of DNA. In all cases, the looping interaction was stabilised by DNA supercoiling. The sinusoidal variation from SfiI reactions on supercoiled DNA at 50 degreesC yielded a helical repeat of about 11.5 base-pairs per turn.  相似文献   

4.
EcoRII is a member of the expanding group of type IIe restriction endonucleases that share the distinguishing feature of requiring cooperativity between two recognition sites in their substrate DNA. To determine the stoichiometry of the active DNA-enzyme complex and the mode of cooperative interaction, we have investigated the dependence of EcoRII cleavage on the concentration of EcoRII dimers. Maximal restriction was observed at dimer/site ratios of 0.25 and 0. 5. The molecular weight of the DNA-enzyme complex eluted from a gel filtration column also corresponds to a dimeric enzyme structure bound to two substrate sites. We conclude that one EcoRII dimer is sufficient to interact cooperatively with two DNA recognition sites. A Lac repressor "barrier" bound between two normally reactive EcoRII sites did not inhibit restriction endonuclease activity, indicating that cooperativity between EcoRII sites is achieved by bending or looping of the intervening DNA stretch. Comparative cleavage of linear substrates with differently spaced interacting sites revealed an inverse correlation between cleavage rate and site distance. At the optimal distance of one helical turn, EcoRII cleavage is independent of the orientation of the recognition sequence in the DNA double strand.  相似文献   

5.
The crystal structure of the type II restriction endonuclease BglI bound to DNA containing its specific recognition sequence has been determined at 2.2 A resolution. This is the first structure of a restriction endonuclease that recognizes and cleaves an interrupted DNA sequence, producing 3' overhanging ends. BglI is a homodimer that binds its specific DNA sequence with the minor groove facing the protein. Parts of the enzyme reach into both the major and minor grooves to contact the edges of the bases within the recognition half-sites. The arrangement of active site residues is strikingly similar to other restriction endonucleases, but the co-ordination of two calcium ions at the active site gives new insight into the catalytic mechanism. Surprisingly, the core of a BglI subunit displays a striking similarity to subunits of EcoRV and PvuII, but the dimer structure is dramatically different. The BglI-DNA complex demonstrates, for the first time, that a conserved subunit fold can dimerize in more than one way, resulting in different DNA cleavage patterns.  相似文献   

6.
By use of restriction endonucleases, the DNA of the cyanobacterium Synechocystis sp. strain PCC 6803 was analyzed for DNA-specific methylation. Three different recognition sites of methyltransferases, a dam-like site including N6-methyladenosine and two other sites with methylcytosine, were identified, whereas no activities of restriction endonucleases could be detected in this strain. slr0214, a Synechocystis gene encoding a putative methyltransferase that shows significant similarities to C5-methylcytosine-synthesizing enzymes, was amplified by PCR and cloned for further characterization. Mutations in slr0214 were generated by the insertion of an aphII gene cassette. Analyses of chromosomal DNAs of such mutants demonstrated that the methylation pattern was changed. The recognition sequence of the methyltransferase was identified as 5'-CGATCG-3', corresponding to the recognition sequence of PvuI. The specific methyltransferase activity was significantly reduced in protein extracts obtained from mutant cells. Mutation of slr0214 also led to changed growth characteristics of the cells compared to wild-type cells. These alterations led to the conclusion that the methyltransferase Slr0214 might play a regulatory role in Synechocystis. The Slr0214 protein was also overexpressed in Escherichia coli, and the purified protein demonstrated methyltransferase activity and specificity for PvuI recognition sequences in vitro. We propose the designation M.Ssp6803I [corrected] (Synechocystis methyltransferase I) for the slr0214-encoded enzyme.  相似文献   

7.
1. Long-term treatment with beta 2-adrenoceptor agonists can lead to a decreased therapeutic efficacy of bronchodilatation in patients with obstructive pulmonary disease. In order to examine whether or not this is due to beta-adrenoceptor desensitization, human bronchial muscle relaxation was studied in isolated bronchial rings after pretreatment with beta 2-adrenoceptor agonists. Additionally, the influence of pretreatment with dexamethasone on desensitization was studied. 2. The effect of beta 2-agonist incubation alone and after coincubation with dexamethasone on density and affinity of beta-adrenoceptors was investigated by radioligand binding experiments. 3. In human isolated bronchi, isoprenaline induces a time- and concentration-dependent beta-adrenoceptor desensitization as judged from maximal reduction in potency by a factor of 7 and reduction of 73 +/- 4% in efficacy of isoprenaline to relax human bronchial smooth muscle. 4. After an incubation period of 60 min with 100 mumol l-1 terbutaline, a significant decline in its relaxing efficacy (81 +/- 8%) and potency (by a factor 5.5) occurred. 5. Incubation with 30 mumol l-1 isoprenaline for 60 min did not impair the maximal effect of a subsequent aminophylline response but led to an increase in potency (factor 4.4). 6. Coincubation of dexamethasone with isoprenaline (120 min; 30 mumol l-1) preserved the effect of isoprenaline on relaxation (129 +/- 15%). 7. In radioligand binding experiments, pretreatment of lung tissue for 60 min with isoprenaline (30 mumol l-1) resulted in a decrease in beta-adrenoceptor binding sites (Bmax) to 64 +/- 1.6% (P < 0.05), while the antagonist affinity (KD) for [3H]-CGP-12177 remained unchanged. 8. In contrast, radioligand binding studies on lung tissue pretreated with either dexamethasone (30 mumol l-1) or isoprenaline (30 mumol l-1) plus dexamethasone (30 mumol l-1) for 120 min did not lead to a significant change of Bmax (160 +/- 22.1% vs 142.3 +/- 28.7%) or KD (5.0 nmol l-1 vs 3.5 nmol l-1) compared to the controls. 9. In conclusion, pretreatment of human bronchi with beta-adrenoceptor agonists leads to functional desensitization and, in lung tissue, to down-regulation of beta-adrenoceptors. This effect can be counteracted by additional administration of dexamethasone. Our model of desensitization has proved useful for the identification of mechanisms of beta-adrenoceptor desensitization and could be relevant for the evaluation of therapeutic strategies to counteract undesirable effects of long-term beta-adrenoceptor stimulation.  相似文献   

8.
In restriction-modification systems, cleavage of substrate sites in cellular DNA by the restriction endonuclease is prevented by the action of a cognate methyltransferase that acts on the same substrate sites. The PvuII restriction endonuclease (R.PvuII) has been structurally characterized in a complex with substrate DNA (Cheng et al., 1994) and as an apoenzyme (Athanasiadis et al., 1994). We report here a structure, determined to 1.9 A resolution by crystallography, of a complex between R.PvuII and iodinated DNA. The presence of an iodine at the 5-carbon of the methylatable cytosine results in the following changes in the protein: His84 moved away from the modified base; this movement was amplified in His85 and disrupts an intersubunit hydrogen bond; and the base modification disturbs the distribution of water molecules that associate with these histidine residues and the area of the scissile bond. Considering these observations, hypotheses are given as to why a similar oligonucleotide, where a methyl group resides on the 5-carbon of the methylatable cytosine, is slowly cleaved by R.PvuII (Rice et al., 1995).  相似文献   

9.
The type I DNA methyltransferase M.EcoR124I is a multi-subunit enzyme that binds to the sequence GAAN6RTCG, transferring a methyl group from S-adenosyl methionine to a specific adenine on each DNA strand. We have investigated the protein-DNA interactions in the complex by DNase I and hydroxyl radical footprinting. The DNase I footprint is unusually large: the protein protects the DNA on both strands for at least two complete turns of the helix, indicating that the enzyme completely encloses the DNA in the complex. The higher resolution hydroxyl radical probe shows a smaller, but still extensive, 18 bp footprint encompassing the recognition site. Within this region, however, there is a remarkably hyper-reactive site on each strand. The two sites of enhanced cleavage are co-incident with the two adenines that are the target bases for methylation, showing that the DNA is both accessible and highly distorted at these sites. The hydroxyl radical footprint is unaffected by the presence of the cofactor S-adenosyl methionine, showing that the distorted DNA structure induced by M.EcoR124I is formed during the initial DNA binding reaction and not as a transient intermediate in the reaction pathway.  相似文献   

10.
A site-specific endonuclease which recognizes the sequence 5'-CCTNAGG-3' was purified to homogeneity from the thermophilic strain Bacillus sp. R7. The endonuclease (BspR7I) is monomeric protein with an apparent molecular weight of 37 kD. The enzyme is active over a wide range of NaCl concentrations, pH, and temperatures. BspR7I cleaves DNA substrates according to the scheme: 5'-CC decreases TNAGG-3' 3'-GGANT increases CC-5', hence the endonuclease represents an isoschizomer of Bsu361.  相似文献   

11.
The DNA specificity subunit (HsdS) of type I restriction-modification enzymes is composed of two independent target recognition domains and several regions whose amino acid sequence is conserved within an enzyme family. The conserved regions participate in intersubunit interactions with two modification subunits (HsdM) and two restriction subunits (HsdR) to form the complete endonuclease. It has been proposed that the domains of the HsdS subunit have a circular organisation providing the required symmetry for their interaction with the other subunits and with the bipartite DNA target. To test this model, we circularly permuted the HsdS subunit of the type IB R-M enzyme EcoAI at the DNA level by direct linkage of codons for original termini and introduction of new termini elsewhere along the N-terminal and central conserved regions. By analysing the activity of mutant enzymes, two circularly permuted variants of HsdS that had termini located at equivalent positions in the N-terminal and central repeats, respectively, were found to fold into a functional DNA recognition subunit with wild-type specificity, suggesting a close proximity of the N and C termini in the native protein. The wild-type HsdS subunit was purified to homogeneity and shown to form a stable trimeric complex with HsdM, M2S1, which was fully active as a DNA methyltransferase. Gel electrophoretic mobility shift assays revealed that the HsdS protein alone was not able to form a specific complex with a 30-mer oligoduplex containing a single EcoAI recognition site. However, addition of stoichiometric amounts of HsdM to HsdS led to efficient specific DNA binding. Our data provide evidence for the circular organisation of domains of the HsdS subunit. In addition, they suggest a possible role of HsdM subunits in the formation of this structure.  相似文献   

12.
13.
14.
The EcoRV endonuclease contacts the minor groove of DNA through a peptide loop encompassing residues 67-72. This loop adapts to distorted DNA in the specific complex and to regular DNA in the nonspecific complex. Random mutagenesis had previously identified glutamine 69 as the key component of the loop and this study reports on mutants with glutamate (Q69E), lysine (Q69K), or leucine (Q69L) at this position. The mutants bound DNA specifically at the EcoRV recognition site in the presence of Ca2+, in the same manner as wild-type EcoRV. In the absence of divalent metals, Q69K and Q69L showed the same nonspecific binding as native EcoRV while Q69E failed to bind DNA. Glutamate at position 69 presumably repels nonspecific DNA whilst allowing the adaptations to specific DNA. Both Q69E and Q69K had severely impaired DNA cleavage activities, while Q69L had a steady-state k(cat) within an order of magnitude of wild-type EcoRV though its primary product was nicked DNA, in contrast to double strand breaks by wild-type EcoRV. The activity of Q69L required higher concentrations of Mg2+ than the wild-type and showed a sigmoidal dependence upon the Mg2+ concentration, indicating two metal ions per strand scission. Transient kinetics on Q69L gave lower rate constants for phosphodiester hydrolysis than wild-type EcoRV and its reaction also involved a slow conformational change preceding DNA cleavage that had no equivalent with the wild-type. Gln69 in EcoRV thus plays key roles in the adjustments of the protein to varied DNA structures and in the alignment of the catalytic functions for DNA cleavage.  相似文献   

15.
We have used the method of Zinkel and Crothers (Zinkel, S.S., and Crothers, D.M. (1990) Biopolymers 29, 29-38) to determine the degree of bending induced by the binding of the restriction endonuclease EcoRV to its recognition sequence (-GATATC-). A set of four calibration DNA fragments was constructed that contained zero, two, four, or six phased A-tracts in their centers and an EcoRV site at the 5'-end to account for the electrophoretic influence of the bound protein. The mobilities of these calibration molecules complexed with EcoRV were compared to that of a test DNA containing a central EcoRV site also complexed with EcoRV. The EcoRV-induced bend angle was found to be 44 degrees +/- 4 degrees. These experiments were performed with a catalytically inactive EcoRV mutant that still binds DNA specifically in the presence of Mg2+. In the absence of Mg2+, which is necessary for specific binding, there is no difference in the mobilities of the fragments with a peripheral or a central EcoRV site complexed with EcoRV, indicating that nonspecific binding on average does not lead to measurable DNA bending.  相似文献   

16.
The structure of the major human apurinic/ apyrimidinic endonuclease (HAP1) has been solved at 2.2 A resolution. The enzyme consists of two symmetrically related domains of similar topology and has significant structural similarity to both bovine DNase I and its Escherichia coli homologue exonuclease III (EXOIII). A structural comparison of these enzymes reveals three loop regions specific to HAP1 and EXOIII. These loop regions apparently act in DNA abasic site (AP) recognition and cleavage since DNase I, which lacks these loops, correspondingly lacks AP site specificity. The HAP1 structure furthermore suggests a mechanism for AP site binding which involves the recognition of the deoxyribose moiety in an extrahelical conformation, rather than a 'flipped-out' base opposite the AP site.  相似文献   

17.
The present work describes mutants of the restriction enzyme EcoRV that discriminate very efficiently between oligodeoxynucleotide substrates with an EcoRV recognition sequence in different sequence context. All of these EcoRV variants harbor substitutions at position 226, where in the cocrystal structure of the specific EcoRV/DNA complex an arginine contacts the backbone of the DNA substrate upstream of the recognition sequence, and cleave an oligodeoxynucleotide with an EcoRV site in a nonflexible sequence context (the recognition site being flanked by runs of A and T) with much higher catalytic efficiency (kcat/Km) than an oligodeoxynucleotide with an EcoRV site in a flexible sequence context (the recognition site being flanked by runs of AT), in contrast to the wild-type enzyme, that cleaves both substrates with the same catalytic efficiency. Steady-state and single-turnover kinetics indicate that the enhanced selectivity of the mutants is due to the catalytic step of the reaction. It is possible to enhance the discriminatory power of these EcoRV variants through the choice of appropriate reaction conditions, in particular low salt concentration and low reaction temperatures. It must be emphasized that the enhanced selectivity of these EcoRV variants toward EcoRV sites in a flexible and nonflexible sequence context, respectively, is not only seen with oligodeoxynucleotides, but also with plasmid substrates.  相似文献   

18.
19.
New restriction endonucleases have been found in microorganisms isolated from the microflora of human teeth. The strain-producers are Actinobacillus suis and Streptococcus milleri. The new enzymes are isoschizomers of the prototypes as follows: AsuHPI - HphI; AsuSAI - SauI; AsuNHI - NheI; AsuMBI and SmiMBI - MboI; SmiI - rare-cutter SwaI.  相似文献   

20.
The EcoRV restriction endonuclease cleaves DNA specifically at its recognition sequence in the presence of magnesium ions, but several studies have indicated that it binds to DNA in the absence of Mg2+ without any preference for its recognition site. However, specific binding to the recognition site has also been reported. To distinguish between these reports, oligodeoxynucleotides were tagged with either dansyl or eosin fluorophores at their 5' termini and annealed to form duplexes of 12 to 16 base-pairs. For each length of duplex, one derivative had the EcoRV recognition sequence while another lacked this sequence. For the duplexes with the recognition site, the fluorophores had no effect on DNA cleavage rates by EcoRV in the presence of Mg2+. The binding of the specific and non-specific duplexes to EcoRV in the absence of Mg2+ was measured by fluorescence resonance energy transfer and by fluorescence depolarization. In both procedures, the signal from the specific complex differed from the complex with non-specific DNA, with the depolarization data indicating that non-specific DNA bound to EcoRV retains a higher rotational freedom than specific DNA. Even so, the equilibrium constant for the binding of specific DNA was identical, within error limits, to that for non-specific DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号