首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
为深入研究冲击载荷下加锚岩体抗剪力学特性,采用实验室试验的方法对2种锚杆材质的加锚岩体开展了不同冲击能量和预紧扭矩下的侧向冲击试验,分析了不同锚杆材质和预紧扭矩对加锚岩体在冲击载荷下抗剪力学性能的影响,监测了落锤冲击力-时程曲线,并利用高速摄像机捕捉了试样冲击变形的全过程.试验结果表明:加锚岩体冲击过程可分为落锤释放、锤岩下移和分离回弹等3个阶段.试样顶底面均为轴向剪切裂缝和伴随竖向裂缝;前面和背面均为腹剪斜裂缝和竖向裂缝;交界面裂缝以钻孔为中心向四周呈放射状分布,且上半部分裂缝数量明显多于下半部分,裂缝宽度多在10 mm以内.在一定范围内,中部混凝土块顶面和交界面破坏程度均随冲击能量的增大而增大,随预紧扭矩的增大而减小.锚杆受动态剪切会发生弯曲、径缩甚至断裂.在一定范围内,冲击能量越大,锚杆弯曲变形越大;预紧扭矩越大,锚杆抗冲击变形能力越强.CRM700型锚杆的抗冲击变形及破断能力均优于HRB500型锚杆,其能够显著提高加锚岩体的整体抗冲击性能.根据冲击力-时程曲线又可将冲击过程分为强冲击阶段、震荡阶段和衰减阶段.强冲击阶段时间仅1 ms左右,主要为锤头与试样发生接触;震荡阶段持续时间达10 ms左右,主要发生混凝土块的破裂失效和锚杆的弯曲变形.锚杆材质和预紧扭矩对加锚岩体在冲击载荷下的抗剪力学性能影响显著,使用CRM700型锚杆或施加适当的预紧扭矩均可提高加锚岩体的抗剪力学性能.  相似文献   

2.
针对锚杆支护系统受到冲击载荷作用时,围岩与托板间作用力瞬间增加,造成托板过载弯折、撕裂及接触区域围岩破裂、塌落等问题,采用实验室试验的方法,搭建了托板与缓冲垫层组合试样静、动载测试试验台,分别测试了 5种组合结构托板的静、动载力学性能,获取了组合结构的静载力-位移曲线、冲击力时程曲线及应变时程曲线;研究了不同冲击载荷下...  相似文献   

3.
为深入研究冲击载荷下加锚岩体抗剪力学特性,采用实验室试验的方法对2种锚杆材质的加锚岩体开展了不同冲击能量和预紧扭矩下的侧向冲击试验,分析了不同锚杆材质和预紧扭矩对加锚岩体在冲击载荷下抗剪力学性能的影响,监测了落锤冲击力-时程曲线,并利用高速摄像机捕捉了试样冲击变形的全过程。试验结果表明:加锚岩体冲击过程可分为落锤释放、锤岩下移和分离回弹等3个阶段。试样顶底面均为轴向剪切裂缝和伴随竖向裂缝;前面和背面均为腹剪斜裂缝和竖向裂缝;交界面裂缝以钻孔为中心向四周呈放射状分布,且上半部分裂缝数量明显多于下半部分,裂缝宽度多在10 mm以内。在一定范围内,中部混凝土块顶面和交界面破坏程度均随冲击能量的增大而增大,随预紧扭矩的增大而减小。锚杆受动态剪切会发生弯曲、径缩甚至断裂。在一定范围内,冲击能量越大,锚杆弯曲变形越大;预紧扭矩越大,锚杆抗冲击变形能力越强。CRM700型锚杆的抗冲击变形及破断能力均优于HRB500型锚杆,其能够显著提高加锚岩体的整体抗冲击性能。根据冲击力-时程曲线又可将冲击过程分为强冲击阶段、震荡阶段和衰减阶段。强冲击阶段时间仅1 ms左右,主要为锤头与试样发生接触;震荡阶段持续时间达10 ms左右,主要发生混凝土块的破裂失效和锚杆的弯曲变形。锚杆材质和预紧扭矩对加锚岩体在冲击载荷下的抗剪力学性能影响显著,使用CRM700型锚杆或施加适当的预紧扭矩均可提高加锚岩体的抗剪力学性能。  相似文献   

4.
为了指导工程开采中动力灾害下恒阻大变形锚杆群对围岩体的稳定性支护,基于双根恒阻大变形锚杆的并联支护原理和霍普金森冲击作用下双根恒阻锚杆的拉伸实验研究,建立了并联作用的双根恒阻大变形锚杆在冲击载荷下的力学模型,并且通过实验结果对比验证了理论模型的可靠性和正确性,进一步得到了双根恒阻大变形锚杆的位移时程曲线和载荷位移关系曲线。研究表明:并联作用的双根恒阻大变形锚杆在冲击载荷作用下,首先通过杆柄的拉伸产生弹性变形;当杆柄内力达到锚杆恒阻力后,开始产生结构变形,套管和杆柄发生相对滑移;套管速度减为零时,结构变形结束,套管和杆柄共同弹性恢复。此外,冲击载荷作用下双恒阻锚杆的位移峰值要明显滞后于载荷峰值。  相似文献   

5.
利用自主研制的静-动加载试验系统开展了等强与非等强螺纹钢锚杆的静力拉伸实验及有无预应力加载的动力冲击实验。结果表明:在静荷载作用下等强与非等强螺纹钢锚杆都经历了“线弹性变形-屈服平台-强化阶段-径缩破坏”的4个阶段;冲击加载时锚杆的屈服阶段可划分为瞬态屈服与稳态屈服,瞬态屈服的峰值载荷明显高于稳态屈服载荷,且相同直径条件下与静力加载相比锚杆屈服伸长量减小;当冲击能量低于9 kJ时,锚杆杆体能承受多次冲击扰动,且冲击后能够保证足够的杆体强度,但当冲击能量高于9 kJ时,锚杆抗冲吸能性能显著下降,低能量冲击时非等强螺纹钢锚杆的抵抗能力明显优于等强螺纹钢锚杆;无论从锚杆的动态轴力-位移曲线还是从锚杆的峰值载荷与伸长量上看,预应力对冲击载荷下锚杆的动力响应特征无明显影响,但进行防冲支护时,有必要提高预应力加载水平。  相似文献   

6.
在冲击地压巷道中,冲击载荷会造成锚杆支护系统构件与围岩相互作用力急剧增加,托板在高作用力下易出现变形破坏。针对上述问题,采用微机控制电液伺服试验机和自主研发的落锤冲击试验装置,对煤矿常用的拱形托板及其组合构件等3种试样进行了力学性能测试,获取试样静载力-位移曲线、冲击力时程曲线、位移时程曲线及变形破坏特征,分析了锚杆托板及组合构件的抗冲击性能。研究结果表明:静载作用下,托板承载力位于228~243 kN,最大变形量14.10 mm,变形呈现拱高降低、四角翘起、连接部位向圆心转移等特征。动载作用下,托板变形均经历拱高降低、四角翘起及压平3个阶段,冲击能量为500~3 000 J时,冲击力时程曲线呈现急剧上升阶段、震荡作用阶段和迅速下降阶段;冲击能量为3 500~5 000J时,冲击力时程曲线呈急剧上升阶段、震荡稳载阶段、震荡上升阶段和迅速下降阶段。随着冲击能量的增加,试样的冲击力峰值均逐渐增大,与静载相比,托板试样的动载荷峰值较大。试样位移时程曲线可分为弹塑性变形和回弹变形两阶段,弹塑性变形阶段变形量与作用时间呈现线性关系,正、反向及组合构件最大形变量平均作用时间占比分别为68.66%、...  相似文献   

7.
采用LS-DYNA数值模拟软件,以实验室金属夏比冲击试验的实际情况为依据,仿真模拟了金属夏比冲击试验,通过选择合理的网格尺寸、准确的材料模型和边界条件,使模拟结果真实、可靠。通过模拟屈服强度相同时不同失效应变对应的冲击吸收功值,得出了屈服强度为500MPa,600MPa的锚杆钢材失效应变与冲击吸收功的线性关系式,通过反推法得出屈服强度为500MPa,600MPa的锚杆钢材特定冲击吸收功下失效应变的值,为今后不同冲击吸收功的高强度锚杆在动载荷下受力与变形的仿真研究提供了依据。  相似文献   

8.
冲击载荷下三轴煤体动力学分析及损伤本构方程   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究冲击载荷下三轴煤体的动力学特征,建立了三轴分离式霍普金森压杆(SHPB)试验系统,开展了轴向静载、围压和冲击载荷随机组合的动态冲击试验,研究了三轴煤体在冲击载荷下的动力学特性。实验结果表明:冲击载荷下三轴煤体动态应力应变曲线无压密阶段,轴向预静载有助于使煤体原生裂隙闭合,初始加载就表现出完整弹性体的特征;当应力达到峰值强度的60%~85%阶段时,应力应变曲线呈现"跃进"现象,可能与碳在晶体微破裂中的作用有关;当应力超过煤体动态强度,试样破坏,应力降低。冲击载荷下三轴煤体动态强度和破坏应变与平均应变率高度线性相关,应变率效应明显,应变率效应使得不同轴向静载、围压和冲击载荷因素对煤体动态强度和破坏应变的影响具有可比性。基于岩石力学强度理论和统计损伤理论,建立了冲击载荷下三轴煤体动态损伤本构模型,该模型综合考虑了轴向静载、围压和冲击载荷等因素,明确地反映了3种因素对煤体动力学特征的影响,轴向静载会劣化煤体,造成动态强度降低,围压和冲击载荷有助于提高煤体的动态强度,理论模型反映的特征与试验结果相吻合,并通过建立的本构模型和试验应力应变数据拟合了理论应力应变曲线,其与试验应力应变曲线基本重合,且应变率越高,一致性越好。  相似文献   

9.
为了揭示锚杆护表构件的抗冲击力学性能,从而为冲击地压巷道锚杆支护中护表构件的选择提供设计依据,采用落锤冲击试验装置开展煤矿常用托盘及其组合构件力学响应试验研究,分析护表构件的冲击力及变形特征.托盘冲击力时程曲线呈现急剧震荡加载、震荡稳载和迅速卸载3个阶段,冲击力以波动的形式围绕冲击力均值上下浮动;冲击力峰值随托盘面积增大而降低、随高度增加而增大.随着冲击能量增加,托盘冲击力峰值和均值均呈增大趋势,明显高于静载下托盘承载力,而锚索和锚杆托盘作用时长变化呈相反趋势,单次落锤冲击下托盘作用时长均不超过8 ms.低能量循环冲击下,托盘承载力趋于稳定,最终承载力随单次循环能量增加而增大,拱位移随循环次数呈线性增加.总冲击能量恒定时,低能量循环冲击下托盘最终承载力低,总变形量小.锚杆托盘与W钢护板组合构件冲击力时程曲线对称性好、作用时程长、震荡幅度弱,且总变形量小,抗冲性能优于单一托盘,表明W钢护板能够起到降低冲击震荡幅度、改善组合构件承载特性的作用.试验获得煤矿常用托盘抗冲能量值,抗冲能量高低与托盘拱部结构有关,由其拱厚度、拱高和面积决定.  相似文献   

10.
为了研究锚索在轴向冲击荷载下的动力响应特征,选取砚北煤矿冲击地压巷道常用的锚索材料,采用AW-1500微机控制电液伺服试验机和自由落锤冲击试验机进行了锚索静、动载力学性能试验,共设计9种不同能量等级的冲击试验,获得了冲击力时程曲线、冲击力-变形曲线、锚索冲击变形以及吸收能量的特征曲线。结果表明:静载拉伸破断载荷为350.83~356.81 k N,平均延伸率3.49%,冲击载荷作用下锚索承受的冲击力明显大于静载破断载荷,而延伸率明显降低,平均最大降低35.24%,锚索脆性破坏特征突出;锚索变形-冲击力曲线变化过程分为初期震荡阶段、急剧增长阶段以及弹性回弹等3个阶段,冲击能量小于15 000 J时,锚索主要发生弹性变形,锚索冲击力时程曲线峰值点与冲击能量峰值点基本一致,随着冲击能量的逐渐增大,锚索冲击力峰值也逐渐增大,在急剧增长阶段震荡型增长趋势较显著;冲击能量大于等于15 000 J时,冲击能量未达到峰值前,锚索即发生破坏,随着冲击能量的增大,锚索塑性变形变化突出,冲击动能向锚索变形能转化,锚索吸收能量与塑性变形基本成正比。通过对锚索冲击载荷下的力学响应特征分析,可为冲击地压矿井的巷道...  相似文献   

11.
李中伟  鞠文君 《煤炭学报》2014,39(Z2):347-353
高强度锚杆在井下使用时经常发生螺纹段脆断现象,这与锚杆材料的冲击韧性密切相关,测试了4个厂家屈服强度500 MPa锚杆的冲击吸收功,不同厂家锚杆冲击韧性差别较大,冲击吸收功从19~165 J不等。对具有不同冲击吸收功锚杆的杆体段和螺纹段分别进行弯曲试验、拉伸试验、复合应力下破坏试验,试验结果表明:冲击韧性影响锚杆螺纹段的冷弯性,当冲击吸收功低于30 J时,锚杆螺纹段冷弯性差;冲击韧性对杆体的冷弯性、杆体段和螺纹段的伸长率没有影响;冲击韧性影响锚杆复合应力下破坏状态,当冲击功低于19 J时,复合应力下锚杆易出现脆性破坏。认为屈服强度500 MPa高强锚杆的冲击吸收功不应低于30 J。  相似文献   

12.
我国煤矿锚杆强度偏低,对冲击吸收功没有指标要求。通过对煤矿井下锚杆破断情况调查及分析,发现锚杆破断强度低、夹杂物含量高、冲击韧性不足、抗冲击能力不够是造成杆体脆断的重要原因,冲击韧性值低是发生脆断的材质内在因素。介绍了超高强热处理锚杆的主要工艺,对超高强热处理锚杆材料进行了拉伸、拉扭弯及力学性能实验室试验,数据显示这种材料在受拉、扭、弯的情况下可以承受较高的载荷,特别是冲击吸收功指标,是热轧强力锚杆的数倍。在潞安集团漳村煤矿动压巷道进行了井下现场试验,对超高强热处理锚杆受力情况进行了监测,锚杆施加预紧扭矩后初始预紧力为52~98 kN,受力稳定后最大受力为223 kN,小于其破断极限,矿压监测数据表明,支护系统有效地控制了围岩的变形,支护效果良好。  相似文献   

13.
锚杆预紧力对锚固体强度强化的模拟实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
韦四江  勾攀峰 《煤炭学报》2012,37(12):1987-1993
锚杆预紧力在巷道支护中发挥着重要作用,但其对锚固体强度强化特征的研究仍存在不少问题;以砂蜡材料、预紧力锚杆和平面应变约束装置制作锚固分离体,在RMT-150C实验机上对其力学特性进行了研究。实验结果表明:锚固体的峰值强度、残余强度的强化系数和岩体强度、锚杆预紧力呈正相关,岩体强度一定时,随着锚杆预紧力的增大,强化系数逐渐增加,锚杆预紧力对锚固体峰后残余强度的强化大于对锚固体峰值强度的强化。锚固体的应变-应力全程曲线与锚杆受力存在着对应关系,锚固体屈服之前,锚杆受力增加缓慢;屈服点之后,受力急剧增加;峰后软化阶段锚杆受力逐渐增加,摩擦阶段锚杆受力处在不断的调整下降中。预紧力一定时,岩体强度越高,锚杆受力增加幅度越小;岩体强度一定时,高预紧力锚杆受力增幅较小;软弱岩层破坏后,锚杆载荷的损失比坚硬岩层大,预紧力锚杆对软弱岩层的作用比坚硬岩层明显。现场实践表明,提高锚杆预紧力能够有效控制围岩的变形。  相似文献   

14.
深部开采中爆破、地震波等冲击对不同养护期的胶结充填体稳定性造成破坏,威胁采场安全。为此采用霍普金森杆试验系统对充填体试样进行单次冲击试验,分析爆破荷载下不同龄期掺膨润土全尾砂胶结充填体的动力学特性。试验结果表明:动态冲击曲线存在多个波峰,养护早期(3d、7d)表现为动态强度硬化(峰值应变0.005左右),后期(14d、28d)为动态强度软化(峰值应变0.002左右);充填体DIF与膨润土掺量正相关,与龄期负相关;养护龄期3~14d时,动态抗压强度、吸收能、单位体积吸收能随膨润土掺量的增大呈先降后升趋势(10%为临界点),28d时,两者正相关,养护龄期的延长可以提高充填体吸收能量的能力,增强抗冲击性能;养护早期韧性指数随膨润土掺量的增大而降低,养护后期两者关系表现为正相关且敏感性更高、增幅更显著。  相似文献   

15.
为了对比研究软岩和硬岩在轴向静荷载受频繁动力冲击作用下的力学特性,对取自冬瓜山铜矿的矽卡岩(硬岩)和大理岩(软岩)开展了动力冲击试验。试验结果表明:轴向静荷载对两种岩石累积冲击次数影响显著,累积冲击次数与轴向静荷载呈二次函数下降关系。大理岩和矽卡岩动态峰值应力均随冲击次数的增加而降低,矽卡岩动态峰值应力与冲击次数呈指数函数关系,大理岩动态峰值应力与冲击次数呈线性函数关系。随着冲击次数的增加,动态弹模整体呈下降趋势,矽卡岩在轴向静荷载为75 MPa和90 MPa时动态弹性模量呈现阶段性特征,并出现冲击疲劳期。大理岩动态弹性模量与矽卡岩在轴向静荷载为110 MPa时的变化规律一致。矽卡岩在75 MPa时,在冲击后期出现了吸收能量的现象,但在90 MPa和110 MPa时,整个冲击过程均为释放能量状态,而大理岩在冲击作用下均为吸收能量状态。  相似文献   

16.
深部岩体处于“三高一扰动”的复杂环境中,为研究巷道掘进过程中冲击荷载对巷道围岩的影响,以石灰岩为研究对象,通过河南理工大学改进的SHPB动静组合加载试验装置,开展三维动静组合加载下的石灰岩力学特性研究。选取典型的轴压梯度(8、15、16、17 MPa)和围压梯度(1、2、3、5、7 MPa),开展冲击气压梯度(0.5、0.6、0.8、1.0 MPa)的三维组合加载试验。研究表明:在三维动静组合加载下,石灰岩峰值应变增大,吸收能也随之增大,峰值达到87.7 W/J时,约为入射能的60%,试件破碎程度最为明显,呈现实验室“岩爆”趋势;反射能、透射能、吸收能随入射能的增加呈线性增长,反射能、透射能、吸收能、入射能和单位体积吸收能随平均应变率的增加呈二次函数增长。此外,在轴压、围压不变时,随冲击气压的增加,应力—应变曲线分为4个阶段,在达到应变峰值时,出现回弹现象,即试件的变形达到峰值应变后应变又开始减小;围压与气压保持不变,轴压变化时试件应力—应变曲线的变化规律与轴压、围压不变时冲击气压的应力—应变曲线的变化规律基本吻合;不同围压下岩石的破坏形态主要为拉伸破坏和压剪破坏。  相似文献   

17.
为研究冲击强度对岩石动态力学特性的影响,以改装的霍普金森压杆(SHPB)装置对砂岩进行了不同冲击强度下的动力学试验,测得了动态应力-应变曲线和应力波波形。然后,基于试验数据分析了冲击强度对砂岩强度、应变特性以及能量耗散规律的影响。结果表明:动态应力-应变曲线未出现压密阶段直接进入弹性阶段,冲击强度越大,应力-应变路径越长;岩样以破碎形态为主,破碎程度与冲击强度呈正相关;随着冲击强度增大,平均抗压强度和平均应变呈线性增长,而平均应变率呈指数增长;平均抗压强度和平均弹性模量随平均应变率呈线性增加。冲击强度越大,入射能和反射能值显著提高而透射能变化不明显,透射系数和反射系数分别呈幂函数增长和对数降低。砂岩吸收能随冲击强度和平均抗压强度分别呈指数关系和对数关系。由此表明,不同冲击强度对砂岩应变特征、强度特征以及能量耗散具有显著影响,适当增加冲击强度可有效提高砂岩吸收能,进而提高破岩效果。  相似文献   

18.
冲击荷载下轴压对峰后破裂砂岩力学特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
刘洋  刘长武 《煤炭学报》2018,43(5):1281-1288
针对深部工程围岩常处于峰后破裂状态且遭受动力扰动影响的特点,利用动静组合加载SHPB实验装置对经静态压缩制备的峰后破裂砂岩进行冲击压缩试验,开展一维动静组合加载下破裂岩石的力学特性研究。试验中预先设置轴向静载为8,24和48 MPa三个系列,然后进行不同应变率下冲击加载,研究轴向静载对峰后破裂砂岩动力学特性的影响。对比完整砂岩试验结果表明:轴向静载8 MPa和相近应变率条件下,峰后破裂砂岩组合强度与冲击强度均低于完整砂岩组合强度与冲击强度,两者变形模量相差不大,但峰后破裂砂岩单位体积吸收能大于完整砂岩单位体积吸收能。轴向静载相同时,峰后破裂砂岩组合强度与冲击强度均随着应变率的增大而增大;轴向静载不同时,峰后破裂砂岩组合强度随着轴向荷载的增大而增大,而冲击强度随着轴向静载的增大先增大后减小。随着轴向静载的增大,峰后破裂砂岩单位体积吸收能也随之增大。动静组合加载下峰后破裂砂岩呈剪切破坏模式,且原始裂纹影响破裂面的扩展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号