首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 718 毫秒
1.
为了探索利用茎秆直径微变化诊断玉米水分亏缺状况的最优指标,采用桶栽的方法,开展了不同水分处理条件下拔节期夏玉米茎秆直径微变化中的日最大收缩量(MDS)、日增长量(DI)和当日恢复时间(RT)3个指标的变化规律及其与土壤相对含水率之间相关关系方面的试验研究。结果表明,(1)不同处理间的MDS和DI受水分亏缺影响差异较为明显,RT对土壤相对含水率的响应较为一致;(2)玉米日最大收缩量MDS和日增长量DI受到环境因素的影响较大,与土壤相对含水率θ的相关系数较小;(3)恢复时间RT与土壤相对含水率θ的相关系数最高,且受水分亏缺处理的影响较小,可以作为诊断玉米水分亏缺状况的较好指标。综上可知,与MDS和DI相比,RT更适合诊断夏玉米水分亏缺状况。  相似文献   

2.
该研究以春季温室番茄为试验材料,以筒栽和小区相结合的方法探索了番茄茎直径变化的机理与规律、外界环境因素对茎直径变化的影响以及如何消除气象因子对实测日最大收缩量(MDS)数值干扰等问题,目的在于为基于茎直径变化监测作物水分状况、实现自动灌溉的技术提供理论和实践依据。试验结果表明,番茄茎直径变化落后于叶水势变化,二者存在很好的相关性。番茄茎直径收缩过程是由韧皮部及木质部收缩同步构成,而恢复过程则是不同步的,木质部恢复较快。番茄盛果期蒸腾强度大于花果期蒸腾强度,蒸腾强度越大一天中最小茎直径出现的时间越晚,而其茎直径开始恢复的临界气孔导度值越小。番茄MDS的变化趋势和日均辐射的变化趋势一致,但变化幅度由土壤水分决定。当土壤相对含水率由田间持水率降至50%时,MDS随土壤水分的下降而变大,天气晴好时MDS能够很好的反映出土壤水分的差异;而当土壤相对含水率小于50%后,MDS随土壤水分的下降而变小。通过统计分析,由实测MDS与参照MDS相比的相对日最大收缩量(RMDS)指标基本上可以消除气象因子对监测结果的影响,稳定的反映土壤水分状况。  相似文献   

3.
充分灌溉和干旱胁迫对棉花茎直径变化的影响   总被引:1,自引:0,他引:1  
以桶栽棉花为试验材料,采用随机区组试验设计,探讨充分灌水条件下(T0)和一个干旱周期中(TI)的茎直径变化量(RV)、最大收缩量(MDS)及每日生长量(DI)之间的差异。试验结果表明,由于受到土壤水分减少的影响,TI处理棉花的茎杆逐渐收缩得不到恢复,其RV曲线下降和T0处理RV曲线的差异逐渐变大,并且同是TI处理的植株其RV下降幅度也不同;二种条件下棉株的MDS和DI均呈负相关;水分胁迫的加剧导致棉花叶片气孔导度变小。经回归分析二处理MDS和气象因子中的有效辐射有较好的相关性,表明有效辐射是导致茎变化的主因。据此提出土壤相对含水量60%为RV产生差异的临界值,土壤相对含水量40%是棉花茎秆内可被用做蒸腾的水分被完全耗尽的临界值;同时提出标准茎变化的概念及其全回归方程。  相似文献   

4.
作物冠层或叶片温度的变化可以反映作物的水分状况[1]。为此,根据能量平衡原理分析了作物的冠层(叶片)—空气温差变化的影响因素,并采用模糊推理技术,以叶片—空气温差及相关的环境因素(空气水汽压差、光照强度、空气温湿度和风速等)为输入变量,以CWSI为输出变量,探讨基于植物叶片—空气温差的作物水分亏缺诊断的智能化方法,实现了作物水分亏缺指标的动态分析,有效地解决了环境因素对CWSI计算结果的影响。采用温室生长的黄瓜为对象进行试验,试验表明:该诊断方法可有效地反映作物水分亏缺程度,克服了传统诊断的局限性。  相似文献   

5.
不同生育期水分亏缺对春青稞水分利用和产量的影响   总被引:6,自引:0,他引:6  
对不同生育期水分亏缺程度对春青稞(Hordeum vulgare)水分利用效率和产量的影响进行了桶栽试验研究。试验处理设充分灌溉处理(2个水分控制下限和秸秆覆盖)以及在全生育期和5个不同生育期的4个水分亏缺程度(轻度、中度、重度和极度)处理,共27个处理。结果表明,在充分灌溉条件下,75%田间持水率水分下限控制处理的春青稞收获指数、籽粒产量和作物水分利用效率大于80%水分处理;秸秆覆盖处理的籽粒产量和水分利用效率在所有试验处理中最大。在全生育期水分亏缺条件下,春青稞籽粒产量均小于充分灌溉处理,且随着水分亏缺程度的增大而显著减小;轻度至重度水分亏缺处理可获得更大的作物收获指数和水分利用效率,但极度水分亏缺却导致最低的籽粒产量、收获指数和水分利用效率。除成熟期水分亏缺处理外,不同生育期水分亏缺处理条件下,春青稞籽粒产量和作物水分利用效率基本随着水分亏缺程度的增大而减小;拔节期、分蘖期和灌浆期水分亏缺对籽粒产量的不利影响较大。地表秸秆覆盖或全生育期轻度至重度水分亏缺处理可提高春青稞水分利用效率。  相似文献   

6.
采用美国生产的DeTransfer 3.27茎流测定系统监测一年生的桃树幼苗树干液流变化.分析了不同水分、氮肥处理下桃树苗树干液流日变化和连日变化特征及茎流与蒸腾的变化关系.结果表明,桃树苗茎液流速率存在明显的日周期和连日变化规律.水分对桃树苗茎流的影响:在相同的氮素水平下茎液流速随土壤水分含量的增加依次增加,无氮处理下,茎液流流速在充分灌水条件下最大峰值为11 g/h左右,较低水条件下增加了15.8%,高氮处理下,茎液流流速最大峰值为23.5 g/h左右.氮肥对桃树苗茎流的影响:施氮肥明显地增加桃树苗茎液流速,在土壤水分供应充足条件下,茎液流流速分别为N1 11g/h、N2 16.5 g/h、N323.5 g/h;茎液流速和蒸腾速率动态曲线有着相似的变化趋势.  相似文献   

7.
作物水分亏缺敏感指标的确定是实现作物精准灌溉的基础。在防雨棚内膜下滴灌条件下通过小区试验观测最大荧光Fm、PSⅡ潜在活性Fv/F0、PSⅡ光化学效率Fv/Fm,探究玉米叶绿素荧光指标对土壤水分亏缺的敏感性。结果表明:1在玉米抽雄期,当土壤水分达到85%田间持水量时,玉米3个叶绿素荧光指标均达到最高;且叶绿素荧光指标与土壤水分的典型相关系数为0.832,为极显著。其中PSⅡ光化学效率Fv/Fm对土壤水分变化表现为最敏感;2在玉米灌浆期,当土壤水分达到80%田间持水量时,玉米3个叶绿素荧光指标均达到最高;且各叶绿素荧光指标均高于抽雄期,典型相关系数为0.893,为极显著。其中PSⅡ潜在活性Fv/F0对土壤水分变化表现为最敏感。可见,叶绿素荧光参数对于土壤水分变化反应敏感,很好地反映了玉米的水分亏缺状态,可作为指导玉米田间精准灌溉的指标。  相似文献   

8.
红枣开花坐果期水分信息诊断指标适宜性分析   总被引:6,自引:0,他引:6  
通过设置充分灌溉和控制灌溉处理,在陕北研究3年生梨枣茎直径最大日收缩量(MDS)、茎直径日变化最大值(MXTD)、正午叶水势(Ψmd)对土壤水势的响应。结果表明,在无水分亏缺的条件下,MDS和Ψmd表现出一些随季节变化的波动,而MXTD则持续增加。土壤水势降低使MDS增大,MXTD和Ψmd降低,但3个指标对土壤水势变化的反应差异较大,MDS和Ψmd的信号强度明显高于MXTD信号强度,3个指标的杂乱信号(变异系数)之间存在显著差异,MDS杂乱信号最小。MDS信号强度与杂乱信号的比值最大。复水后,MDS降低,Ψmd和MXTD均增加。3个指标的信号强度均降低,降低幅度分别为24%、19%、22%,MDS和Ψmd对复水的反应程度大于MXTD。所以MDS是诊断梨枣水分信息比较适宜的指标。  相似文献   

9.
辣椒植株茎直径微变化与作物体内水分状况的关系   总被引:17,自引:1,他引:17  
在温室条件下,采用盆栽土培和小区试验相结合的方法,以辣椒为材料进行了植株茎直径微变化与作物体内水分状况关系的试验研究。结果表明,植株茎膨胀、收缩与作物体内的水分状况有密切的关系,茎直径变化量能灵敏、实时、准确的反映植株体内的水分状况。与其他水分诊断方法相比,茎直径微变化法具有简便、稳定、无损、连续监测和自动记录的特点。  相似文献   

10.
作物冠层温度是反映作物水分状况的一个良好指标,在研究环境因素对冠层温度影响的基础上,分析了不同土壤水分条件下棉花冠层温度的变化规律。研究表明了冠层温度与细胞液浓度之间存在良好关系,建立的冠层温度与气温差同气象因素和土壤水分的关系可用于判断作物的缺水状况  相似文献   

11.
番茄茎直径MDS的通径分析与数值模拟   总被引:3,自引:0,他引:3  
以春夏季温室番茄为实验材料,研究充分灌溉条件下的茎直径变化指标日最大收缩量(MDS)与气象因子(水面蒸发量Ew、日最高气温Tmax、日均气温Tm、日均空气饱和差DVPDm、正午空气饱和差DVPDmd、日总辐射Rs和日辐射峰值Rmax)的相关性。结果表明,Rmax、DVPDm和Ew与MDS的直接通径系数为正,Rmax的直接通径系数最高,其次为DVPDm,二者与MDS的相关性达显著水平,但Ew与MDS的相关性未达显著水平,表明Rmax和DVPDm为决策变量,对温室番茄茎直径变化起直接作用。而Tmax、Tm、DVPDmd、Rs与MDS的直接通径系数为负,但各自总作用又都为正,表明它们主要通过Rmax和DVPDm对番茄茎直径变化起间接作用。据此建立了MDS与Rmax和DVPDm的模拟方程,经检验此方程达显著水平,预测值能够准确地反映出MDS实测数值的变化。  相似文献   

12.
夏玉米茎流和茎直径变化规律及其关系分析   总被引:3,自引:0,他引:3  
通过对夏玉米生育期的茎直径微变化和茎流变化过程的监测,分析了茎直径微变化、茎流随土壤含水率和气象因子的变化规律,并对茎流与茎直径微变化之间的关系进行了分析。结果表明,茎直径微变化的日变化过程呈现明显的昼夜变化规律,白天收缩,夜间复原;茎直径日最大收缩量随含水量的升高而降低,可将其作为诊断作物水分状况的一个指标。茎流同样呈现明显的昼夜变化规律,白天茎流逐渐增大,在13:30左右达到最大值,然后减小。茎直径微变化、茎流的变化均受到太阳辐射、饱和水汽压差、空气温度、风速的影响。茎直径微变化与主要气象因子均呈负相关,茎流与其均为正相关关系。茎直径微变化与茎流之间呈负相关关系,且相关性很好。  相似文献   

13.
The effects of water deficit in different fruit growth stages on the variation of stem sap flux of 6-year old greenhouse-grown pear-jujube trees were investigated. Treatments included sufficient water supply during the whole fruit-growing period (T1), mild water deficit during the flowering–fruit setting stage (T2), moderate water deficit during the fruit rapid growth stage (T3) and severe water deficit during the fruit maturing stage (T4). Results showed that significant compensation effect on stem sap flux after re-watering was observed in T2, but not in T3 and T4 stages. At the end of rapid growth stage, the diurnal variation of stomatal conductance generally had a similar trend as that of stem sap flux, but with a distinct midday depression from 12:00 to 14:00 p.m. In addition, a linear relationship between the relative available soil water content (RAWC) and the ratio of daily stem sap flux to that of sufficient water treatment was observed (R2 = 0.4489).  相似文献   

14.
The objectives of this study were to investigate the effects of full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD) on plant biomass, irrigation water productivity (IWP), nitrogen use efficiency (NUE) of tomato, and soil microbial C/N ratio. The plants were grown in pots with roots split equally between two soil compartments in a climate-controlled glasshouse. During early fruiting stage, plants were exposed to FI, DI, and PRD treatments. In FI, both soil compartments were irrigated daily to a volumetric soil water content of 18%; in PRD, only one soil compartment was irrigated to 18% while the other was allowed to dry to ca. 7-8%, then the irrigation was shifted; in DI, the same amount of water used for the PRD plants was equally split to the two soil compartments. The results showed that, the FI treatment produced significantly higher dry biomasses of leaves, stems, and fresh weight of fruit and water productivity of aboveground dry biomass production than either DI or PRD, however, fruit IWP in DI was 25% higher than that of FI, and harvest index in DI and PRD were 50% and 22% higher than FI, respectively, for the 26% and 23% less water used in the DI and PRD, respectively, than the FI treatment. The DI treatment caused the smallest losses of N and highest N use efficiency by fruit. Both DI and PRD caused a significant increase in the soil microbial C/N ratio, meaning ratio of fungal biomass was high at low soil water contents. The result indicates that more work is needed to link the aboveground N uptake and the underground microbially mediated N transformation under different water-saving irrigation regimes.  相似文献   

15.
The use of trunk diameter fluctuations and their derived parameters for irrigation scheduling in woody crops is reviewed. The strengths and weaknesses of these continuously measured plant-based water stress indicators compared with other discretely measured indicators for diagnosing plant water status in young and mature trees are discussed. Aspects such as sensor reading variability, signal intensity and the relationship between trunk diameter fluctuations and plant water status are analyzed in order to assess their usefulness as water stress indicators. The physiological significance of maximum and minimum daily trunk diameter and maximum daily trunk shrinkage (MDS) are also considered. Current knowledge of irrigation protocols and baselines for obtaining maximum daily trunk shrinkage reference values is discussed and new research objectives are proposed. We analyze the response of woody crops to continuous deficit irrigation scheduled by maintaining MDS signal intensity at threshold values to generate mild, moderate and severe water stress and assess the possibility of using linear variable displacement transducer (LVDT) sensors in trunk as a precision tool for regulated deficit irrigation scheduling. Finally, the possibility of using MDS signal intensity as a tool to match the irrigation regime to tree water requirements is also reviewed.  相似文献   

16.
The effects of different deficit-irrigation strategies on plant-water status and yield were studied for 5 years in early-maturing peach trees (cv. Flordastar) growing under Mediterranean climatic conditions. The deficit-irrigation (DI) treatments were continuous, regulated (RDI), partial root-zone drying and a soil water content-based treatment. Peach fruit yield was more affected by post-harvest irrigation than by pre-harvest irrigation. Deficit irrigation for this cultivar produced significant water savings but caused a yield penalty, with the RDI treatment showing the clearest manifestation of this. Deficit irrigation in general affected the number of fruits per tree more than fruit size. Average stem water potential threshold values for summer (July–August–September) should be maintained above ?0.9 MPa if yields are not to decrease by more than 10 %. The marginal water use efficiency value of 0.07 for the irrigation range studied indicates that the maximum benefit, derived from a linear production function, will always occur at the limit of the water constraint prior to maximum yield values. Decision-makers should apply the minimal amount of irrigation water that allows maximum yields. Since DI treatments decrease yield due to smaller tree sizes, it is advisable that thinning practices be adapted when deficit irrigation is imposed.  相似文献   

17.
The use of plant water status indicators such as midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) in irrigation scheduling requires the definition of a reference or threshold value, beyond which irrigation is necessary. These reference values are generally obtained by comparing the seasonal variation of plant water status with the environmental conditions under non-limiting soil water availability. In the present study an alternative approach is presented based on the plant’s response to water deficit. A drought experiment was carried out on two apple cultivars (Malus domestica Borkh. ‘Mutsu’ and ‘Cox Orange’) in which both indicators (Ψstem and MDS) were related to several plant physiological responses. Sap flow rates, maximum net photosynthesis rates and daily radial stem growth (DRSG) (derived from continuous stem diameter variation measurements) were considered in the assessment of the approach. Depending on the chosen plant response in relationship with Ψstem or MDS, the obtained reference values varied between −1.04 and −1.46 MPa for Ψstem and between 0.17 and 0.28 mm for MDS. In both cultivars, the approach based on maximum photosynthesis rates resulted in less negative Ψstem values and smaller MDS values, compared to the approaches with sap flow and daily radial stem growth. In the well-irrigated apple trees, day-to-day variations in midday Ψstem and MDS were related to the evaporative demand. These variations were more substantial for MDS than for midday Ψstem.  相似文献   

18.
Pomegranate trees (Punica granatum L.) is a deciduous fruit tree included in the so-called group of minor fruit tree species, not widely grown but of some importance in the south east of Spain. Pomegranate trees are considered as a culture tolerant to soil water deficit. However, very little is known about pomegranate orchard water management. The objective of this research was to asses the feasibility of using trunk diameter variation (TDV) indexes, obtained by means of LVDT sensors, as a plant water stress indicators for pomegranate trees. The experiment was carried out with mature trees grown in the field under three irrigation regimes: control well watered trees; trees continuously deficit irrigated at 50% of the control regime (SDI); and trees that had a summer water stress cycle being irrigated at 25% of the control rates only in July and August (RDI). The seasonal variations of maximum diurnal trunk shrinkage (MDS) and trunk growth rates (TGR) were compared with midday stem water potential (Ψstem) measurements. During the course of the entire season, control trees maintained lower MDS values than the SDI ones. In the RDI treatment, as water restrictions began, there was a slow increase in MDS, in correspondence with a decrease in Ψstem. When water was returned at full dosage, the RDI quickly recovered to MDS and Ψstem values similar to the control. However, lower MDS for a given Ψstem values were observed as the season advanced. The magnitude of differences between well watered and deficit irrigated trees was much larger in the case of MDS than for Ψstem. However, the tree-to-tree variability of the MDS readings was more than four times higher than for Ψstem; average coefficient of variation of 7.5 and 36% for Ψstem and MDS, respectively. On the other hand, TGR did not clearly reflect differences in tree water status. Overall, results reported indicated that MDS is a good indicator of pomegranate tree water status and it can be further used for managing irrigation. However, the seasonal changes in the MDS-Ψstem relationship should be taken into account when attempting to use threshold MDS values for scheduling irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号