首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported on the functional characterization of carp Il10. We showed that carp Il10 is able to downregulate proinflammatory activities by carp phagocytes and promote B cell proliferation, differentiation and antibody production as well as proliferation of memory T cells. Taking advantage of the recent annotation of the carp genome, we completed the sequence of a second il10 paralogue, named il10b, the presence of which was expected owing to the recent (8 million years ago) fourth round of whole genome duplication that occurred in common carp. In the present study we closely compared the two Il10 paralogues and show that Il10a and Il10b have almost identical gene structure, synteny, protein sequence as well as bioactivity on phagocytes. Although the two il10 paralogues show a large overlap in tissue expression, il10b has a low constitutive expression and is highly upregulated upon infection, whereas il10a is higher expressed under basal conditions but its gene expression remains constant during viral and parasitic infections. This differential regulation is most likely due to the observed differences in their promoter regions. Altogether our results demonstrate that gene duplication in carp, although recent, led to sub-functionalization and expression divergence rather than functional redundancy of the Il10 paralogues, yet with very similar protein sequences.  相似文献   

2.
Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system (CNS). Many nerve axons are insulated by a myelin sheath and their demyelination not only prevents saltatory electrical signal conduction along the axons but also removes their metabolic support leading to irreversible neurodegeneration, which currently is untreatable. There is much interest in potential therapeutics that promote remyelination and here we explore use of leukaemia inhibitory factor (LIF), a cytokine known to play a key regulatory role in self-tolerant immunity and recently identified as a pro-myelination factor. In this study, we tested a nanoparticle-based strategy for targeted delivery of LIF to oligodendrocyte precursor cells (OPC) to promote their differentiation into mature oligodendrocytes able to repair myelin. Poly(lactic-co-glycolic acid)-based nanoparticles of ∼120 nm diameter were constructed with LIF as cargo (LIF-NP) with surface antibodies against NG-2 chondroitin sulfate proteoglycan, expressed on OPC. In vitro, NG2-targeted LIF-NP bound to OPCs, activated pSTAT-3 signalling and induced OPC differentiation into mature oligodendrocytes. In vivo, using a model of focal CNS demyelination, we show that NG2-targeted LIF-NP increased myelin repair, both at the level of increased number of myelinated axons, and increased thickness of myelin per axon. Potency was high: a single NP dose delivering picomolar quantities of LIF is sufficient to increase remyelination.Impact statementNanotherapy-based delivery of leukaemia inhibitory factor (LIF) directly to OPCs proved to be highly potent in promoting myelin repair in vivo: this delivery strategy introduces a novel approach to delivering drugs or biologics targeted to myelin repair in diseases such as MS.  相似文献   

3.
Dendritic cells (DC) are antigen-presenting cells that can be classified into three major cell subsets: conventional DC1 (cDC1), cDC2 and plasmacytoid DCs (pDC), none of which have been identified in horses. Therefore, the objective of this study was to identify and characterize DC subsets in equine peripheral blood, emphasizing on pDC. Surface marker analysis allowed distinction of putative DC subsets, according to their differential expression of CADM-1 and MHC class II. Equine pDC were found to be Flt3+ CD4low CD13 CD14 CD172a CADM-1 MHCIIlow. The weak expression of CD4 on equine pDC contrasts with findings in several other mammals. Furthermore, pDC purified by fluorescence-activated cell sorting were found to be the only cell subset able to produce large amounts of IFN-α upon TLR9-agonist stimulation. The pDC identity was confirmed by demonstrating high-levels of PLAC8, RUNX2 and TCF4 expression, showing pDC-restricted expression in other mammals.  相似文献   

4.
5.
Celiac disease (CD) is a common CD4+ T cell mediated enteropathy driven by gluten in wheat, rye, and barley. Whilst clinical feeding studies generally support the safety of oats ingestion in CD, the avenin protein from oats can stimulate intestinal gluten-reactive T cells isolated from some CD patients in vitro. Our objective was to establish whether ingestion of oats or other grains toxic in CD stimulate an avenin-specific T cell response in vivo.We fed participants a meal of oats (100 g/day over 3 days) to measure the in vivo polyclonal avenin-specific T cell responses to peptides contained within comprehensive avenin peptide libraries in 73 HLA-DQ2.5+ CD patients. Grain cross-reactivity was investigated using oral challenge with wheat, barley, and rye.Avenin-specific responses were observed in 6/73 HLA-DQ2.5+ CD patients (8%), against four closely related peptides. Oral barley challenge efficiently induced cross-reactive avenin/hordein-specific T cells in most CD patients, whereas wheat or rye challenge did not. In vitro, immunogenic avenin peptides were susceptible to digestive endopeptidases and showed weak HLA-DQ2.5 binding stability.Our findings indicate that CD patients possess T cells capable of responding to immuno-dominant hordein epitopes and homologous avenin peptides ex vivo, but the frequency and consistency of these T cells in blood is substantially higher after oral challenge with barley compared to oats. The low rates of T cell activation after a substantial oats challenge (100 g/d) suggests that doses of oats commonly consumed are insufficient to cause clinical relapse, and supports the safety of oats demonstrated in long-term feeding studies.  相似文献   

6.
7.
8.
Differences in responses of chicken bone marrow derived dendritic cells (BMDC) to in vitro treatment with lipopolysaccharide (LPS), heat, and LPS + heat were identified. The Fayoumi is more disease resistant and heat tolerant than the Leghorn line. Nitric Oxide (NO) production, phagocytic ability, MHC II surface expression and mRNA expression were measured. NO was induced in BMDC from both lines in response to LPS and LPS + heat stimulation; Fayoumi produced more NO with LPS treatment. Fayoumi had higher phagocytic ability and MHC II surface expression. Gene expression for the heat-related genes BAG3, HSP25, HSPA2, and HSPH1 was strongly induced with heat and few differences existed between lines. Expression for the immune-related genes CCL4, CCL5, CD40, GM-CSF, IFN-γ, IL-10, IL-12β, IL-1β, IL-6, IL-8, and iNOS was highly induced in response to LPS and different between lines. This research contributes to the sparse knowledge of genetic differences in chicken BMDC biology and function.  相似文献   

9.
10.
A hallmark of mature mammalian ventricular myocardium is a positive force-frequency relationship (FFR). Despite evidence of organotypic structural and molecular maturation, a positive FFR has not been observed in mammalian tissue engineered heart muscle. We hypothesized that concurrent mechanical and electrical stimulation at frequencies matching physiological heart rate will result in functional maturation. We investigated the role of biomimetic mechanical and electrical stimulation in functional maturation in engineered heart muscle (EHM). Following tissue consolidation, EHM were subjected to electrical field stimulation at 0, 2, 4, or 6 Hz for 5 days, while strained on flexible poles to facilitate auxotonic contractions. EHM stimulated at 2 and 4 Hz displayed a similarly enhanced inotropic reserve, but a clearly diverging FFR. The positive FFR in 4 Hz stimulated EHM was associated with reduced calcium sensitivity, frequency-dependent acceleration of relaxation, and enhanced post-rest potentiation. This was paralleled on the cellular level with improved calcium storage and release capacity of the sarcoplasmic reticulum and enhanced T-tubulation. We conclude that electro-mechanical stimulation at a physiological frequency supports functional maturation in mammalian EHM. The observed positive FFR in EHM has important implications for the applicability of EHM in cardiovascular research.  相似文献   

11.
12.
Thymic epithelial cells (TEC) and dendritic cells (DC) play a role in T cell development by controlling the selection of the T cell receptor repertoire. DC have been described to take up antigens in the periphery and migrate into the thymus where they mediate tolerance via deletion of autoreactive T cells, or by induction of natural regulatory T cells. Migration of DC to thymus is driven by chemokine receptors. CCL2, a major ligand for the chemokine receptor CCR2, is an inflammation-associated chemokine that induces the recruitment of immune cells in tissues. CCL2 and CCR2 are implicated in promoting experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis. We here show that CCL2 is constitutively expressed by endothelial cells and TEC in the thymus. Transgenic mice overexpressing CCL2 in the thymus showed an increased number of thymic plasmacytoid DC and pronounced impairment of T cell development. Consequently, CCL2 transgenic mice were resistant to EAE. These findings demonstrate that expression of CCL2 in thymus regulates DC homeostasis and controls development of autoreactive T cells, thus preventing development of autoimmune diseases.  相似文献   

13.
14.
Until recently, little was known about the importance of CD8+ T effectors in promoting and preventing autoimmune disease development. CD8+ T cells can oppose or promote autoimmune disease through activities as suppressor cells and as cytotoxic effectors. Studies in several distinct autoimmune models and data from patient samples are beginning to establish the importance of CD8+ T cells in these diseases and to define the mechanisms by which these cells influence autoimmunity. CD8+ effectors can promote disease via dysregulated secretion of inflammatory cytokines, skewed differentiation profiles and inappropriate apoptosis induction of target cells, and work to block disease by eliminating self-reactive cells and self-antigen sources, or as regulatory T cells. Defining the often major contribution of CD8+ T cells to autoimmune disease and identifying the mechanisms by which they alter the pathogenesis of disease is a rapidly expanding area of study and will add valuable information to our understanding of the kinetics, pathology and biology of autoimmune disease.  相似文献   

15.
The efficient delivery of short interfering RNA (siRNA) is an enormous challenge in the field of gene therapy. Herein, we report a delivery nanosystem based on programmed DNA self-assembly mammalian target of rapamycin (mTOR) siRNA-loaded DNA nanotubes (DNA-NTs). We demonstrate that these siRNA-DNA-NTs can be effectively transfected into pulmonary arterial smooth muscle cells (PASMCs) via endocytosis; and that the loaded mTOR siRNA can induce obvious autophagy and inhibit cell growth under both normal and hypoxic conditions. Moreover, we found that mTOR siRNA can control the autophagy and proliferation of PASMCs under hypoxic condition, suggesting a potential therapeutic application for mTOR siRNA in diseases involving abnormal autophagy in PASMCs.  相似文献   

16.
The infectious hematopoietic necrosis virus (IHNV; Rhabdoviridae, Novirhabdovirus) infects teleost fish, such as salmon and trout, and is responsible for significant losses in the aquaculture industry and in wild fish populations. Although IHNV enters the host through the skin at the base of the fins, the viral adhesion and entry mechanisms are not fully understood. In recent years, evidence has accumulated in support of the key roles played by protein-carbohydrate interactions between host lectins secreted to the extracellular space and virion envelope glycoproteins in modulating viral adhesion and infectivity. In this study, we assessed in vitro the potential role(s) of zebrafish (Danio rerio) proto type galectin-1 (Drgal1-L2) and a chimera galectin-3 (Drgal3-L1) in IHNV adhesion to epithelial cells. Our results suggest that the extracellular Drgal1-L2 and Drgal3-L1 interact directly and in a carbohydrate-dependent manner with the IHNV glycosylated envelope and glycans on the epithelial cell surface, significantly reducing viral adhesion.  相似文献   

17.
Vaccination aims at generating memory immune responses able to protect individuals against pathogenic challenges over long periods of time. Subunit vaccine formulations based on safe, but poorly immunogenic, antigenic entities must be combined with adjuvant molecules to make them efficient against infections. We have previously shown that gas-filled microbubbles (MB) are potent antigen-delivery systems. This study compares the ability of various ovalbumin-associated MB (OVA-MB) formulations to induce antigen-specific memory immune responses and evaluates long-term protection toward bacterial infections. When initially testing dendritic cells reactivity to MB constituents, palmitic acid exhibited the highest degree of activation. Subcutaneous immunization of naïve wild-type mice with the OVA-MB formulation comprising the highest palmitic acid content and devoid of PEG2000 was found to trigger the more pronounced Th1-type response, as reflected by robust IFN-γ and IL-2 production. Both T cell and antibody responses persisted for at least 6 months after immunization. At that time, systemic infection with OVA-expressing Listeria monocytgenes was performed. Partial protection of vaccinated mice was demonstrated by reduction of the bacterial load in both the spleen and liver. We conclude that antigen-bound MB exhibit promising properties as a vaccine candidate ensuring prolonged maintenance of protective immunity.  相似文献   

18.
19.
Neuropeptide Y (NPY) plays different roles in mammals such as: regulate food intake, memory retention, cardiovascular functions, and anxiety. It has also been shown in the modulation of chemotaxis, T lymphocyte differentiation, and leukocyte migration. In fish, NPY expression and functions have been studied but its immunomodulatory role remains undescribed. This study confirmed the expression and synthesis of NPY in S. salar under inflammation, and validated a commercial antibody for NPY detection in teleost. Additionally, immunomodulatory effects of NPY were assayed in vitro and in vivo. Phagocytosis and superoxide anion production in leukocytes and SHK cells were induced under stimulation with a synthetic peptide. IL-8 mRNA was selectively and strongly induced in the spleen, head kidney, and isolated cells, after in vivo challenge with NPY. All together suggest that NPY is expressed in immune tissues and modulates the immune response in teleost fish.  相似文献   

20.
Bat immunity has received increasing attention because some bat species are being decimated by the fungal disease, White Nose Syndrome, while other species are potential reservoirs of zoonotic viruses. Identifying specific immune processes requires new specific tools and reagents. In this study, we describe a new mouse monoclonal antibody (mAb) reactive with Eptesicus fuscus immunoglobulins. The epitope recognized by mAb BT1-4F10 was localized to immunoglobulin light (lambda) chains; hence, the mAb recognized serum immunoglobulins and B lymphocytes. The BT1-4F10 epitope appeared to be restricted to Microchiropteran immunoglobulins and absent from Megachiropteran immunoglobulins. Analyses of sera and other E. fuscus fluids showed that most, if not all, secreted immunoglobulins utilized lambda light chains. Finally, mAb BT1-4F10 permitted the identification of B cell follicles in splenic white pulp. This Microchiropteran-specific mAb has potential utility in seroassays; hence, this reagent may have both basic and practical applications for studying immune process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号