首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
针对进给轴热误差建模中忽略电控数据和时间序列影响的问题,提出一种考虑温度变化与电控数据的长短期记忆(Long-Short Term Memory,LSTM)神经网络热误差预测模型.以三轴立式加工中心为试验对象,首先对进给轴进行热变形分析,再以温度变化、电控数据为输入样本,建立了LSTM神经网络热误差预测模型,随后通过与仅考虑温度变化的LSTM神经网络,以及同时考虑温度变化与电控数据的BP神经网络进行对比分析,试验论证表明,对数控机床进给轴进行热误差建模时,在考虑温度变化的基础上,进一步考虑电控数据可以提高模型的预测精度和鲁棒性,且在同样输入条件下,LSTM神经网络热误差预测模型相较于BP神经网络有更好的预测精度和鲁棒性.  相似文献   

2.
随着我国经济实力的不断发展,我国对于工业加工领域的重视程度在不断的加强,尤其是在数控机床的应用,具有重要的意义,不仅能够有效提高数控机床工作效率和质量,还能保障产品质量。为了有效判断数控机床档次,应当以数控机床加工精度作为主要的检测标准,而传统的五轴数控机床在热影响下,经常性的出现加工精度下降的问题,针对于此,本文基于BP神经网络的五轴数控机床热误差补偿情况进行建模分析,对比之前的应用数据可知其能够有效提高五轴数控机床的加工精度,具有重要的推广价值。  相似文献   

3.
为最大限度减少热误差对多轴联动机床加工精度的影响,综合遗传算法全局收敛性和人工神经网络局部搜索快速性的优点,提出一种基于遗传算法优化BP网络隐层节点数及初始值的机床热误差建模方法。运用Matlab-GUI工具开发了具有通用性的交互式多轴机床热误差建模仿真系统,通过与传统的BP神经网络进行对比分析及试验论证,证明该模型预测精度更高、通用性强。  相似文献   

4.
基于BP神经网络数控机床热误差建模的研究   总被引:2,自引:0,他引:2  
热误差是影响数控机床加工的最大误差因素。采用变惯性因子粒子群算法优化BP神经网络的权值和阈值的方法对数控机床进行热误差建模,不仅可以克服基本BP算法收敛速度慢和易陷入局部极值的局限,而且精度相对较高,可以很好的提高BP网络的学习能力与泛化能力。仿真实验表明,变惯性因子PSOBP优化模型性能优于BP网络和标准PSOBP算法优化模型。  相似文献   

5.
基于遗传算法优化小波神经网络数控机床热误差建模   总被引:2,自引:0,他引:2  
数控机床的热误差已经成为影响其加工精度的一个关键因素,为最大限度提高数控机床热误差补偿的精度和效率,结合遗传算法自适应全局优化搜索能力和小波神经网络良好的时频局部特性的优点,提出一种基于遗传算法优化小波神经网络的机床热误差补偿模型。以某型号五轴摆动卧式加工中心为试验对象,以机床温度变量和热误差为数据输入样本,建立小波神经网络模型热误差预测模型,然后用遗传算法优化小波神经网络权值、阈值,最终建立热误差预测模型。通过与传统人工神经网络和普通小波神经网络进行对比分析及试验论证表明,该补偿模型具有精度高、抗扰动能力和鲁棒性强等优点,有望在实际加工场合的数控机床的热误差预测和补偿研究中得到更大的推广应用。  相似文献   

6.
数控机床热误差补偿的人工神经网络建模及其应用   总被引:4,自引:0,他引:4  
使用神经网络理论对数控机床热误差数学建模进行研究分析,并将其与传统的最小二乘线性建模所得热误差数学模型进行综合对比。通过应用实例分析比较表明:BP网络模型和RBF网络模型与传统的最小二乘线性模型相比具有更好的拟合性和预测能力。  相似文献   

7.
热误差严重影响着机床的加工精度,对机床关键部件进行热特性分析是开发精密机床的重要环节。通过测量包括数控机床的特殊位置温度和定位误差在内的热特性,研究了温升与定位误差之间的关系,提出了一种基于贝叶斯神经网络的热误差建模方法。通过K-means聚类和相关系数法来选择温度敏感点,可以有效地抑制温度测量点之间的多重共线性问题。结果表明:通过使用贝叶斯神经网络能提高机床88.015 9%的精度,比BP神经网络高出15.763 8%,与BP神经网络模型相比,贝叶斯神经网络具有更加优良预测性能。贝叶斯神经网络模型为降低机床热误差的影响提供了新思路。  相似文献   

8.
针对数控机床热误差建模补偿的问题,提出了灰色神经网络建模补偿的新方法。首先利用机床的温度值建立了机床热误差的灰色系统预测模型,再由灰色模型预测值得到的残差建立神经网络预测模型。结合灰色系统和神经网络的优点,建立了一种新的灰色系统和BP神经网络组合热误差预测模型。最后以实测数据建模说明了灰色神经网络模型预测效果明显优于各单项模型,方法优异的预测性能对于具有复杂成分的动态数据序列的机床热误差建模也适用。  相似文献   

9.
数控机床进给轴热误差补偿技术研究综述   总被引:1,自引:0,他引:1  
机床在内外热源共同作用下产生热变形,严重影响机床的精度稳定性与零件加工精度,如何抑制机床热误差是一个重要的研究领域.介绍了机床热误差避免方法和热误差补偿方法的研究进展.分析了直线进给轴误差的成因,并阐述了有/无预紧条件下丝杠热变形过程及机理.介绍了温度测点位置优化方法,以及数据驱动与机理驱动的热误差建模理念、方法及特点...  相似文献   

10.
11.
为探究数控机床进给系统中各因素对热误差的影响规律,建立精准的热误差预测模型。 在进给速度为 10 m/ min、环境 温度 20℃的条件下进行进给系统热误差测量实验,获得进给系统关键点的温升及热误差。 为提高预测精度,采用 Tent 混沌改 进松鼠搜索算法,并利用改进的算法对神经网络进行优化,建立热误差预测模型。 利用热误差测量实验获得的数据进行验证, 结果表明改进前的神经网络预测误差为 12. 23% ,改进后的模型预测误差为 8. 92% ,精度有较大提升。 利用预测模型针对不同 进给速度下相同位置处热误差进行分析,结果表明,进给系统中关键测温点的温度和丝杠各点的热误差随着进给速度的增加而 增加。 因此提出的预测模型可实现进给系统热误差的准确预测,为误差补偿提供理论依据。  相似文献   

12.
热变形引起的误差是影响数控机床精度的主要因素之一。为了减小热误差对数控机床精度的影响,提出一种基于CNN-GRU组合神经网络的热误差预测方法。通过热误差实验,采集螺旋曲面专用数控机床直线进给系统的温升数据和热误差数据;利用模糊C均值聚类和灰色关联度分析筛选进给系统温度敏感点;以温度敏感点的温升数据和进给系统热误差为数据样本,建立CNN-GRU热误差预测模型。为验证模型的准确性和实用性,与基于CNN-LSTM和基于LSTM的传统热误差预测模型进行预测对比分析,结果表明CNN-GRU模型预测结果的平均绝对误差、均方根误差和决定系数均优于CNN-LSTM模型和LSTM模型,具有较高的预测精度和鲁棒性。提供的热误差模型可为后续误差补偿奠定基础,为数控机床的热误差预测提供思路。  相似文献   

13.
基于遗传算法优化BP神经网络的数控机床热误差补偿   总被引:1,自引:0,他引:1  
以提高数控机床加工精度为主要目的,针对减少热误差而提出一种基于遗传算法优化BP神经网络的数控机床热误差补偿方法.首先,分析遗传算法优化的BP神经网络学习算法.然后,建立神经网络模型对三轴联动卧式加工中心进行实时补偿.实验仿真结果表明遗传优化BP神经网络模型具有预测补偿能力强、补偿精度高、拟合性能优、实时性好等特点.  相似文献   

14.
热变形误差(即热误差)是影响数控机床定位精度的重要因素之一.针对机床热误差具有非线性等特点,将模糊控制技术与神经网络技术相结合,提出一种基于模糊神经网络的数控机床热误差补偿技术.以MAKINO立式加工中心为对象,经过MATLAB仿真,结果表明模糊神经网络作为热误差的预报模型是理想的,具有较高的预报精度.  相似文献   

15.
热误差补偿是提高数控机床加工精度的一种重要手段,而神经网络技术又是热误差建模和热误差补偿的主要工具.本文介绍了各种神经网络技术在数控机床热误差建模和补偿中的应用,并且通过实例说明了神经网络技术的作用.  相似文献   

16.
分析了数控机床热误差对制造加工精度的影响及影响数控机床热误差的关键因素,对采用神经网络模型预报数控机床热误差进行了深入分析,提出了具有反馈输入环节的动态神经网络模型.讨论了建立模型的关键技术问题,并对基于该模型的数控机床热误差的智能预报进行了计算机仿真分析.  相似文献   

17.
以机床-工件系统的热变形为研究对象,应用神经网络理论建立机床-工件系统的热误差模型,对热误差神经网络模型的关键输入参数进行了分析讨论,提出了该模型的误差补偿策略。以某型号大尺寸回转支承滚道数控车削加工为例,建立了热误差模型,对回转支承滚道加工实施热误差补偿,结果表明,机床-工件系统的热误差模型有较强的预测能力,提出的补偿方法有较好的补偿效果。  相似文献   

18.
为了克服独立筛选关键温度点再进行热误差建模破坏其内在联系从而降低热误差模型预测性能的问题,提出了一种统一框架下同时筛选关键温度点和热误差建模的方法。采用最小二乘支持向量机作为基本热误差模型,将温度点的选择状态和模型超参数作为优化变量,采用二进制鲸鱼优化算法进行寻优,并综合考虑最大化预测精度和最小化关键温度点个数设计损失函数。以一台卧式加工中心为例,进行热误差实验,利用所提方法在10折交叉验证模式下筛选出了最优关键温度点,将其个数从20减少到了3,并同时获得了模型最优超参数。最后,与传统独立方式进行了对比分析,结果表明利用所提建模方法热误差预测精度最高提高约62.8%,验证了其有效性和优越性,为后续热误差补偿实施提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号