首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 250 毫秒
1.
磷钨酸对甲酸在碳载Pd催化剂上电氧化的促进作用   总被引:2,自引:1,他引:1  
利用X射线能量色散(EDS)谱、X射线衍射(XRD)谱和电化学等技术研究了电解液中磷钨酸(PWA)对直接甲酸燃料电池(DFAFC)中甲酸在碳载Pd(Pd/C)催化剂上电氧化的促进作用. 研究结果发现, 因吸附的PWA能促进甲酸在Pd/C催化剂上的脱氢而加速了甲酸的电氧化. 这种促进作用与PWA的浓度有关, 当PWA的浓度低于0.15 mg/mL时, 该促进作用随PWA的浓度的增加而增加; 当PWA的浓度高于0.15 mg/mL时, 过多吸附的PWA会覆盖过多Pd/C催化剂的活性点而使其电催化性能随PWA的浓度增大而降低. 因此, 当电解液中PWA的浓度为0.15 mg/mL时, Pd/C催化剂对甲酸氧化的电催化性能最好.  相似文献   

2.
通过水浴浸泡制备了磷钨酸(PWA)修饰的活性炭(PWA/C),再通过液相还原法将Pd沉积于PWA/C复合载体上制备了Pd-PWA/C催化剂. 采用X射线能量色散(EDS)谱、X射线衍射(XRD)谱、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对产物进行表征. 结果表明,磷钨酸修饰活性炭不仅能有效降低Pd纳米粒子的粒径,而且与Pd纳米粒子间发生了强烈作用. 电化学测试结果显示,Pd-PWA/C催化剂对甲酸氧化的电催化活性和稳定性均远优于Pd/C催化剂,这是由于Pd与PWA/C间的强烈作用既能有效降低CO在催化剂上的吸附强度和吸附量,又能降低甲酸分解的速率,从而减弱CO的毒化作用.  相似文献   

3.
通过水浴浸泡制备了磷钨酸(PWA)修饰的活性炭(PWA/C), 再通过液相还原法将Pd沉积于PWA/C复合载体上制备了Pd-PWA/C催化剂. 采用X射线能量色散(EDS)谱、 X射线衍射(XRD)谱、 透射电子显微镜(TEM)和X射线光电子能谱(XPS)对产物进行表征. 结果表明, 磷钨酸修饰活性炭不仅能有效降低Pd纳米粒子的粒径, 而且与Pd纳米粒子间发生了强烈作用. 电化学测试结果显示, Pd-PWA/C催化剂对甲酸氧化的电催化活性和稳定性均远优于Pd/C催化剂, 这是由于Pd与PWA/C间的强烈作用既能有效降低CO在催化剂上的吸附强度和吸附量, 又能降低甲酸分解的速率, 从而减弱CO的毒化作用.  相似文献   

4.
为了解HClO4、NH4ClO4和NaClO4电解液对炭载Pd(Pd/C)催化剂电极对甲酸氧化的电催化性能的影响,在用X射线衍射(XRD)谱、能量色散谱(EDS)和透射电子显微镜(TEM)对Pd/C催化剂进行表征的基础上,采用电化学方法测量了Pd/C催化剂在不同电解液中对甲酸氧化的电催化性能.发现在不同电解液中,Pd/C催化剂对甲酸氧化的电催化活性和稳定性按NH4ClO4NaClO4HClO4的次序降低.由于甲酸的存在,不同电解液的pH相差较小,因此,电解液的pH影响较小,而阳离子的影响较大.在NaClO4电解液中的性能优于在HClO4电解液中的性能是pH的影响.在NH4ClO4电解液中的性能优于在NaClO4电解液中是由于NH4+能降低CO在Pd/C催化剂电极上的吸附强度和吸附量,这一发现对提高直接甲酸燃料电池(DFAFC)的性能很有意义.  相似文献   

5.
硅钨酸修饰碳载Pd催化剂对甲酸氧化的电催化性能   总被引:2,自引:0,他引:2  
用络合还原法合成了用作直接甲酸燃料电池(DFAFC)中阳极碳载Pd(Pd/C)催化剂, 并研究了电解液中的硅钨酸(SiWA)对甲酸在Pd/C催化剂电极上氧化的促进作用. 结果表明, SiWA不但能提高Pd/C催化剂对甲酸氧化的电催化活性, 而且能增加电催化稳定性. 这种促进作用与SiWA浓度有关. 当SiWA浓度为0.40 g·L-1时, 促进作用最佳. 当SiWA浓度大于0.40 g·L-1时, 由于过多的SiWA吸附在Pd/C催化剂上而覆盖了部分Pd活性位点, 反而会降低促进作用. 另外, 由于SiWA在Pd/C催化剂上的吸附, 降低了CO的吸附量, 提高了Pd/C催化剂对甲酸氧化的电催化稳定性, 也促进了甲酸通过直接途径氧化.  相似文献   

6.
用X射线衍射和电化学方法研究了在甲酸溶液中浸泡一段时间后的Pd/C催化剂的结构和电催化性能, 发现在甲酸溶液中浸泡15 d后, Pd/C催化剂中Pd粒子的相对结晶度由1.73增加到3.34, 平均粒径由4.4 nm降低到1.8 nm, 对甲酸氧化的电催化活性和稳定性降低, 甲酸氧化的峰电流密度由9.3 mA/cm2降低到6.7 mA/cm2. 这可能是由Pd/C催化剂中的Pd在甲酸中会有一定的溶解和Pd/C催化剂能催化分解甲酸引起的.  相似文献   

7.
郭琦  李焕芝  季云  陆天虹 《应用化学》2013,30(2):191-195
直接甲酸燃料电池的两大问题是Pd催化剂对甲酸氧化的电催化稳定性不好和Pd能催化甲酸分解。研究发现,当Pd/C在偏钒酸钠溶液中浸泡后能吸附上VO3-,吸附上VO3-的Pd/C催化剂对甲酸分解的催化性能会大大降低,由甲酸分解产生的CO的量也大大降低,使Pd/C催化剂被CO毒化的几率也大大降低,因此,在偏钒酸钠溶液中浸泡后的Pd/C催化剂对甲酸氧化的峰电流密度要比没有浸泡的Pd/C催化剂高13%左右。计时电流曲线的测量表明,6000 s时在偏钒酸钠溶液中浸泡后的Pd/C催化剂对甲酸氧化的峰电流密度要比没有浸泡的Pd/C催化剂高42%左右。结果证明,在偏钒酸钠溶液中浸泡能提高Pd/C催化剂对甲酸氧化的电催化活性,特别是电催化稳定性。  相似文献   

8.
杨改秀  邓玲娟  唐亚文  陆天虹 《应用化学》2009,26(12):1476-1479
用X射线能谱(EDS)、X射线衍射(XRD)和电化学等测试技术研究了电解液中的磷钨酸(PWA)对甲酸在碳载Pt(Pt/C)催化剂电极上氧化的促进作用。 结果表明,PWA不但能提高甲酸在Pt/C催化剂电极上氧化的电催化活性,而且也能提高其电催化稳定性。 这种促进作用与电解液中PWA的浓度有关,当电解液中PWA的质量浓度为0.10 g/L时,这种促进作用最佳。 这主要是由于电解液中PWA质量浓度>0.10 g/L时,吸附到电极表面的PWA的量太多,占据了Pt/C催化剂电极中Pt表面的部分活性位点,从而降低了催化剂的电催化性能。  相似文献   

9.
为了了解(NH4)2SO4,K2SO4和H2SO4电解液对炭载Pd(Pd/C)催化剂对甲酸氧化的电催化性能的影响和机理,用电化学方法测量了Pd/C催化剂在不同电解液中对甲酸氧化的电催化性能。发现在不同电解液中,Pd/C催化剂对甲酸氧化的电催化活性和稳定性按(NH4)2SO4>K2SO4>H2SO4的次序降低。由于在含甲酸的电解液中,不同电解液的pH值差别较小,电解液的pH值只有较小的影响。其次,电解液的电导率对甲酸氧化峰峰电位有一定的影响。最后,由于NH4+起着特殊作用,它能降低CO在Pd/C催化剂电极上的吸附量,因此,在(NH4)2SO4电解液中,Pd/C催化剂对甲酸氧化的电催化性能最好。  相似文献   

10.
用X射线能量色散谱(EDS)、X射线衍射(XRD)谱、拉曼光谱和电化学技术研究和比较了直接甲酸燃料电池(DFAFC)中Vulcan XC-72炭黑载Pd (Pd/XC)和大孔炭载Pd (Pd/MC)催化剂对甲酸氧化的电催化性能. 循环伏安曲线测量表明甲酸在Pd/XC和Pd/MC催化剂电极上主要氧化峰的峰电位基本相同, 在0.15 V左右, 但在Pd/MC催化剂电极上的峰电流密度比在Pd/XC催化剂上的大30%左右. 计时电流曲线测量表明, 在6000 s时, 在Pd/MC催化剂电极上的峰电流密度比在Pd/XC催化剂上的大38%左右, 这些结果说明Pd/MC催化剂对甲酸氧化的电催化活性和稳定性要好于Pd/XC催化剂. 由于Pd/MC和Pd/XC催化剂的Pd粒子平均粒径和相对结晶度相似, 因此, Pd/MC催化剂电催化性能好的原因只能归结于MC大的孔径和高的石墨化程度引起的高电导率.  相似文献   

11.
用浸渍的方法制备了硅钨酸(SiWA)修饰的炭载Pd(Pd/C-SiWA)催化剂。 计时电流曲线研究表明,在Pd/C和Pd/C-SiWA催化剂电极上,3000 s时的电流密度分别为0.013和0.082 A/mg,分别为10 s时电流密度的2.5%和14.1%。 结果表明,Pd/C-SiWA催化剂对甲酸氧化的电催化稳定性要远远优于Pd/C催化剂。 这是因为Pd/C催化剂上SiWA的修饰抑制了甲酸的自分解, 从而减小了CO的毒化作用,改进了Pd/C催化剂对甲酸氧化的电催化和稳定性。  相似文献   

12.
Pd/TiC-C催化剂对甲酸氧化的电催化性能   总被引:1,自引:1,他引:0  
研究了TiC和C作混合载体的Pd(Pd/TiC-C)催化剂对甲酸氧化的电催化性能。发现Pd/TiC-C催化剂对直接甲酸燃料电池(DFAFC)中甲酸氧化的电催化性能要优于Pd/C催化剂。而且,Pd/TiC-C催化剂的电催化性能与C和TiC的质量比有关,当质量比为2时,Pd/TiC-C催化剂对甲酸氧化的电催化活性和稳定性最好,甲酸在C和TiC的质量比为2的Pd/TiC-C催化剂电极上的氧化峰峰电位为0.164 V,比在Pd/C催化剂电极上负移12 mV,峰电流密度为23.08 mA/cm2,比在Pd/C催化剂电极上高约42%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号