首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical and enzymatic properties of the cytochrome system in the particulate preparations obtained from dormant spores, germinated spores, young vegetative cells, and vegetative cells of Bacillus subtilis PCI219 were investigated. Difference spectra of particulate fractions from dormant spores of this strain suggested the presence of cytochromes a, a(3), b, c(+c(1)), and o. All of the cytochrome components were present in dormant spores and in germinated spores and vegetative cells at all stages which were investigated. Concentrations of cytochromes a, a(3), b, and c(+c(1)) increased during germination, outgrowth, and vegetative growth, but that of cytochrome o was highest in dormant spores. As the cytochrome components were reducible by reduced nicotinamide adenine dinucleotide (NADH), they were believed to be metabolically active. Difference spectra of whole-cell suspensions of dormant spores and vegetative cells were coincident with those of the particulate fractions. NADH oxidase and cytochrome c oxidase were present in dormant spores, germinated spores, and vegetative cells at all stages after germination, but succinate cytochrome c reductase was not present in dormant spores. Cytochrome c oxidase and succinate cytochrome c reductase activities increased with growth, but NADH oxidase activity was highest in germinated spores and lowest in vegetative cells. There was no striking difference between the effects of respiratory inhibitors on NADH oxidase in dormant spores and those on NADH oxidase in vegetative cells.  相似文献   

2.
Summary The ultrastructure of T. antarctica var. antarctica vegetative and resting stages are compared using light and transmission electron microscopy. Resting spores contain noticeably more lipid reserves than do vegetative cells. Numerous mitochondria and generally fewer numbers of other organelles are eliminated from spores into an abortive daughter cell when the spore formation division sequence is terminated. The remaining spore contents are a compact arrangement of organelles with lipid bodies predominating. These two stages are thus ultrastructurally distinct, and differences in their chemical composition can be manifested as cytological modifications.  相似文献   

3.
S ummary . The antigenic structure of a stable asporogenic variant of the M8 strain of Bacillus cereus has been compared with that of the parent strain. Ultrasonic extracts of cells of both parent strain and variant harvested at different ages have been analysed by immunoelectrophoresis against antisera prepared by injecting such extracts into rabbits.
Disintegrates of cells of the asporogenic variant were antigenically identical with disintegrates of vegetative cells of the parent strain. Disintegrates of cells in later stages of sporulation and of mature spores of the parent strain contained thermostable antigens which were never detected in the variant. Antigens of isolated cell walls, protoplasts and flagella were also studied.
Examination of esterase and catalase content of the two strains showed that although the variant had the same enzymes as the young vegetative cells of the parent strain it never developed the thermostable catalase found in disintegrated spores. Protein components of the two strains at different stages of growth and of the isolated cell fractions were studied by electrophoresis in polyacrylamide gels.  相似文献   

4.
5.
A mutant which is capable of differentiating into spores and stalk cells without forming a cell aggregate was isolated from the cellular slime mould, Dictyostelium discoideum. The mutant stopped developing at various stages, before formation of mature fruits, and the cells differentiated into spores and stalk cells at whichever stage the development stopped. Unaggregated cells also differentiated into spores or stalk cells, depending on the culture conditions; differentiation into spores predominated in nutrient rich medium, while differentiation into stalk cells predominated in nutrient poor medium. The ratio of spores to stalk cells or of prespores to total cells in cell masses depended on the terminal structures formed; the ratio was unusually high or unusually low in a structure which stopped developing before papilla formation, while the ratio was normal in a structure formed after that stage. When isolated from a cell mass, prespore cells of the mutant did not dedifferentiate or resumed vegetative growth, indicating that they had lost plasticity of differentiation. The conditioned medium in which the mutant cells had grown was effective in inducing differentiation of wild type slug cells into spore-like or stalk-like cells.  相似文献   

6.
The application of neutron activation analysis for mineral determinations in bacteria was investigated. Elements considered here were manganese and sodium. The sporeformer Bacillus megaterium ATCC 19213 was utilized. With this method, the manganese and sodium levels of whole and ashed vegetative cells, sporulating cells, and free spores were determined. The culture medium was also analyzed for these two elements. The results indicate that neutron activation analysis is readily applicable to the study of mineral content of bacterial cells, spores, and culture media. The method has been shown to be ideal for the study of incorporation and egression of mineral elements during vegetative growth and secondary metabolism of sporulation.  相似文献   

7.
Sporosarcina halophila forms endospores. Electron micrographs revealed ultrastructural similarity to spores of S. ureae. Spore germination indicated by loss of refractility, darkening, swelling and formation of new vegetative cells was followed by phase contrast light microscopy. To induce spore germination, the endospores needed to be heat avtivated. After activation, they were inoculated into nutrient broth medium supplemented with sea-water. Double concentrated sea-water was found to be optimal for germination. Similar to other bacterial endospores, the spores were found to be resistant to heat and ethanol. An ultraviolet absorbing substance was isolated from suspensions of free spores; it was identified to be pyridine-2,6-dicarboxylic acid (DPA) usually present in bacterial spores. DPA was detected in amounts ranging from 5–7% of the spore dry weight; it was not detected in extracts of vegetative cells.Abbreviation DPA 2,6-pyridine-dicarboxylic acid  相似文献   

8.
Subcellular fractions were prepared from Streptomyces griseus No. 45-H at different stages of life cycle, and their proteolytic activity was examined. The highest proteolytic activity was found in the 24- and 72- h-old vegetative hyphae, the lowest in the resting spores. Spores contained about 9--30% of the proteolytic activity of vegetative cells. At the age of 16 h about 80%, at 26 h 70%, at 72 h 40%, and in spores about 60% of the proteolytic activity was particulate. The greatest part of the proteolytic activity could be inhibited by EDTA, lower levels of serine and sulfhydryl protease activities were detected in the cell-free extracts of vegetative cells.  相似文献   

9.
Action of egg white lysozyme on Clostridium tyrobutyricum.   总被引:1,自引:1,他引:0       下载免费PDF全文
A 500-U ml-1 portion of egg white lysozyme was able to kill 99% of 5 X 10(5) resting vegetative cells of Clostridium tyrobutyricum within 24 h of incubation at 25 degrees C. Spores were completely resistant to lysozyme. Proliferating vegetative cells were severely inhibited, although lysozyme-resistant cells developed in growing cultures in the presence of lysozyme. Whereas early stages of spore germination (loss of optical refractility and heat resistance) were not inhibited by lysozyme, the overall outgrowth of spore cells into vegetative cells was delayed by 1 day in the presence of 500 U of lysosyme ml-1. This delay was independent of the lysozyme sensitivity or resistance of the mother culture of the used spores. It is suggested that this inhibition by lysozyme of the outgrowth of spore cells into vegetative cells of the lactate-fermenting C. tyrobutyricum is the basis for the observation that lysozyme can substitute for nitrate in preventing the "late gas" defect of Edam- and Gouda-type cheeses.  相似文献   

10.
AIMS: To determine the fate of Bacillus cereus spores or vegetative cells in simulated gastric medium. Methods and RESULTS: The effects of acidity on the survival of B. cereus in a medium simulating human stomach content was followed on spores at pH 1.0-5.2, and on vegetative cells at pH 2.5-5.7. Gastric media (GM) were prepared by mixing equal volumes of a gastric electrolyte solution with J broth (JB), half-skim milk, pea soup and chicken. At pH 1.0 and 1.4, the number of spores slightly decreased in GM-JB and GM-pea soup and remained stable in GM-milk and GM-chicken. A rapid marked decrease (always higher than 2.0 log CFU ml(-1) in 2 h) in vegetative cell counts was observed at pH below 4.2, 4.0, 3.6 and 3.5 in GM-chicken, GM-JB, GM-milk and GM-pea soup, respectively. Between pH 5.0 and 5.3, B. cereus growth was observed in GM-JB (1.2 log CFU ml(-1) increase after 4 h) and in GM-pea soup (1.8 log CFU ml(-1) increase after 4 h). CONCLUSIONS: Bacillus cereus spores are very much more resistant to gastric acidity than vegetative cells. This resistance strongly depends on the type of food present in the GM. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggest that the probability that viable B. cereus cells enter the small intestine, where they can cause diarrhoea, strongly depends on the form of the ingested cells (spores or vegetative cells), on what food they are ingested with, and on the level of stomach acidity.  相似文献   

11.
A 500-U ml-1 portion of egg white lysozyme was able to kill 99% of 5 X 10(5) resting vegetative cells of Clostridium tyrobutyricum within 24 h of incubation at 25 degrees C. Spores were completely resistant to lysozyme. Proliferating vegetative cells were severely inhibited, although lysozyme-resistant cells developed in growing cultures in the presence of lysozyme. Whereas early stages of spore germination (loss of optical refractility and heat resistance) were not inhibited by lysozyme, the overall outgrowth of spore cells into vegetative cells was delayed by 1 day in the presence of 500 U of lysosyme ml-1. This delay was independent of the lysozyme sensitivity or resistance of the mother culture of the used spores. It is suggested that this inhibition by lysozyme of the outgrowth of spore cells into vegetative cells of the lactate-fermenting C. tyrobutyricum is the basis for the observation that lysozyme can substitute for nitrate in preventing the "late gas" defect of Edam- and Gouda-type cheeses.  相似文献   

12.
Both tetrasporangia and dormant apical cells of short vegetative filaments of the marine red alga Ptilota hypnoides have been examined by electron microscopy. Various cytoplasmic inclusions readily distinguish the vegetative apical cells from the reproductive apical cells which become tetrasporangial mother cells. The transformation of tetrasporangial mother cells into mature tetrasporangia involves a series of cytoplasmic changes which can be correlated with specific changes in the investing wall layers. The extracellular changes provide the basic criteria for the division of tetrasporogenesis into 3 successive stages. The ultrastructure of each stage is described and discussed in relation to the current knowledge of red algal cytology. In addition, a possible mechanism for the liberation of spores and gametes of red algae is proposed.  相似文献   

13.
The degree of inactivation by UV irradiation was different between vegetative cells and spores of bacteria isolated from sewage sludge composting at 60°C. By using this property, a method to estimate the spore ratio of a mixture of vegetative cells and spores was presented. This UV irradiation method was applied to the estimation of the spore ratio of sewage sludge compost samples collected at several stages of composting. The spore ratio of mesophilic bacteria in the samples obtained at the thermophilic stage of 60°C was 40% at most. The vegetative form of mesophilic bacteria showed a thermotolerance property at 60°C by forming colonies but showed no respiratory activity at that temperature.  相似文献   

14.
The repair of deoxyribonucleic acid (DNA) in germinating spores was studied in comparison with that in vegetative cells. Radiation-induced single-strand breaks in the DNA of spores and of vegetative cells of Bacillus subtilis were rejoined during postirradiation incubation. The molecular weight of single-stranded DNA was restored to the level of nonirradiated cells. The rate of the rejoining of DNA strand breaks in irradiated spores was essentially equal to that in irradiated vegetative cells. The rejoining in spores germinating in nutrient medium occurred in the absence of detectable DNA synthesis. In this state, normal DNA synthesis was not initiated. Very little DNA degradation occurred during the rejoining process. On the other hand, in vegetative cells the rejoining process was accompanied by a relatively large amount of DNA synthesis and DNA degradation in nutrient medium. The rejoining occurred in phosphate buffer in vegetative cells but not in spores in which germination was not induced. Chloramphenicol did not interfere with the rejoining process in either germinating spores or vegetative cells, indicating that the rejoining takes place in the absence of de novo synthesis of repair enzyme. In the radiation-sensitive strain uvs-80, the capacity for rejoining radiation-induced strand breaks was reduced both in spores and in vegetative cells, suggesting that the rejoining mechanism of germinating spores is not specific to the germination process.  相似文献   

15.
It was shown that spore germination of different Bacillus anthracis strains in macrophage-like cells J774A.1 depended on the genotype of the strains. The virulent B. anthracis strains contain plasmids pXO1 and pX02 responsible for the synthesis of a toxin and a capsule, respectively. The loss of one of the plasmids results in the reduction of strain virulence. It was shown that effective survival of germinating spores in macrophages occurred in the presence of plasmid pXO1 only. The spores of the B. anthracis strains ?Ames and STI-Rif deprived of plasmid pXO1 were least adapted to passing through the intracellular stage. The B. anthracis strains 81/1 and 71/12 (carrying plasmids pXO1 and pXO2 and synthesizing the toxin and capsule) less effectively survived in the cytoplasm of macrophages than the strain STI-1 which has only the plasmid pXO1. It was found that the rate of synthesis of the capsule consisting of polymer gamma-D-glutamic acid depended on the ability of bacterial cells to escape from macrophages. In the B. anthracis strains carrying plasmid pXO2, capsule synthesis by vegetative cells was activated within macrophages that promoted a rapid escape of the vegetative cells from the macrophages. On the contrary, most of capsule-free cells of the vaccine strain STI-1 remained inside macrophages during the whole period of observation. Thus, integrated regulation of two processes, namely synthesis of the toxin components participating in the transition of the germinating cell from phagosome into cytoplasm, and synthesis of the capsule whose presence promotes rapid escape of bacterial cells from macrophages by presently unknown mechanism play the key role in anthrax development at early stages.  相似文献   

16.
17.
Bacillus subtilis forms both vegetative cells and spores. The fluidity of the membranes in these forms was measured by using fluorescent anisotropy of 1,6‐diphenyl‐1,3,5‐hexatriene (DPH). The spores were more rigid than the vegetative cells, suggesting that the structure of the spores and vegetative cells was different. This difference was thought to be due to the structure of the cell membranes. The anisotrophy of DPH in the cell membranes of spores gave higher values at all temperatures. The anisotrophy of DPH in the cell membranes of vegetative cells was lower than that of the spores and the value depended upon the temperature. Time Domain Reflectometry (TDR) was used to measure the quantities of bound and free water in the vegetative cells and spores. The spores were dehydrated, and the amount of bound and free water in the spores was about two‐thirds of the levels in the vegetative cells. The spores have fewer sugars molecules on their cell surface membranes, but contained as much sugars within the cell. Almost 100 per cent of the vegetative cells wee absorbed toward chitin, but the spores were not absorbed toward it at all. It was felt that the surface membrane of the vegetative cell had a high mobility because it was sugar‐rich, while the surface membrane of the spore showed a lower mobility because there are fewer sugars on the outer membrane. The spores survive in high temperatures because the surface membrane of the spore is tight and has relatively few sugars. Dehydration causes the rigidity of the spores. On the other hand, the vegetative cells are sugar‐ and water‐rich, which makes them more fluid. The difference between the vegetative cells and spores is the glycosylation of their surface membranes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
The structure of the omega-particle-bacteria, growing in the micronucleus of Paramecium caudatum (Ciliata, Protozoa), was studied by electrom microscopy in the course of their life cycle. The cytoplasm of the spindle-shaped vegetative cells contains a large number of dense particles and transparent regions comprising the fibrillar material. Such cells, via several intermediate stages, are transformed into elongated twisted cells that are regarded as spores. The spore consists of two parts: homogeneous, and that containing the membrane system and rounded light bodies. The membranes are often double and connected with the fibrils. The cell wall is constructed, during all stages, of the outer membrane layer and the inner electron-dense layer.  相似文献   

19.
Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333-1345. 1966.-Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl(2), SrCl(2), or BaCl(2). Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed "coat fraction" from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH.  相似文献   

20.
The deoxyribonucleic acid (DNA) polymerases were partially purified from spores and vegetative cells of Bacillus subtilis. Some biochemical properties of the enzymes from the spores were studied in comparison with those from the vegetative cells. The spores and vegetative cells had at least three species of DNA polymerases (DNA polymerase I, II and III). These DNA polymerases in spores could not be distinguished from those in vegetative cells, respectively, with regard to the reresponses to ionic strength, the sensitivity to thiol-blocking agents, the template specificity, pH and temperature optima in assay, and the sedimentation behavior. It is inferred that DNA polymerases from spores was essentially identical to those from vegetative cells.

The DNA polymerase activity decreased rapidly in the course of sporulation, and only about 20% is recovered in the spores, suggesting that an extentive inactivation mechanism of the enzymes would be involved during sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号