首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大孔吸附树脂分离纯化荔枝核黄酮类化合物的研究   总被引:6,自引:2,他引:6  
比较了D101、D3520、NKAII、AB-8、X-5、HPD-100、HPD-300、HPD-600等8种大孔吸附树脂对荔枝核中抗乙肝活性成分黄酮类化合物的吸附及解吸性能,筛选出效果较好的HPD-300树脂进行分离纯化实验研究。实验表明,HPD-300树脂能够有效地吸附和解吸荔枝核黄酮类化合物,并确定了最佳的吸附和解吸工艺参数。采用最佳的工艺条件分离纯化荔枝核黄酮类化合物,黄酮类化合物的含量由31%提高到82%。  相似文献   

2.
In recent years, green extraction of bioactive compounds from herbal medicines has generated widespread interest. Deep eutectic solvents (DES) have widely replaced traditional organic solvents in the extraction process. In this study, the efficiencies of eight DESs in extracting flavonoids from Acanthopanax senticosus (AS) were compared. Response surface methodology (RSM) was employed to optimize the independent variable including ultrasonic power, water content, solid-liquid ratio, extraction temperature, and extraction time. DES composed of glycerol and levulinic acid (1:1) was chosen as the most suitable extraction medium. Optimal conditions were ultrasonic power of 500 W, water content of 28%, solid-liquid ratio of 1:18 g·mL−1, extraction temperature of 55 °C, and extraction time of 73 min. The extraction yield of total flavonoids reached 23.928 ± 0.071 mg·g−1, which was 40.7% higher compared with ultrasonic-assisted ethanol extraction. Macroporous resin (D-101, HPD-600, S-8 and AB-8) was used to recover flavonoids from extracts. The AB-8 resin showed higher adsorption/desorption performance, with a recovery rate of total flavonoids of up to 71.56 ± 0.256%. In addition, DES solvent could efficiently be reused twice. In summary, ultrasonic-assisted DES combined with the macroporous resin enrichment method is exceptionally effective in recovering flavonoids from AS, and provides a promising environmentally friendly and recyclable strategy for flavonoid extraction from natural plant sources.  相似文献   

3.
大孔吸附树脂分离纯化异甘草素的研究   总被引:1,自引:2,他引:1  
研究大孔吸附树脂分离纯化异甘草素的工艺条件及参数。通过研究HPD-600、D4020、D101、AB-8、NKA-II、AL-2和NKA-9树脂对异甘草素的吸附和解吸附能力,筛选最佳树脂为AB-8,并研究了其对异甘草素的吸附和解吸附性能,确定了最佳的吸附与解吸附工艺参数,吸附:pH=5,室温,流速1.5BV/h,溶液处理量为5BV;脱附:洗脱剂为70%的乙醇溶液,流速1BV/h,洗脱剂用量4.5BV。异甘草素样品溶液经AB-8树脂吸附与脱附后回收率为76.7%,纯度由2.02%提高到29.1%,提高了14.4倍。实验结果表明,AB-8树脂对异甘草素的吸附量大,脱附容易,可以应用于异甘草素的分离纯化。  相似文献   

4.
In this study, an effective method was developed for the isolation and enrichment of Ginkgo biloba extract by continuous chromatography system. The adsorption and desorption ratio of flavonoids as main index, the best macroporous resin was screened out from six resins by static adsorption and desorption tests. At the same time the adsorption and desorption parameters were optimized by dynamic adsorption and desorption tests. Under optimal parameters, five operations consisting of loading, washing, desorbing, regenerating, and balancing were integrated across the continuous chromatography system for the purpose of refining 66 L of crude extract solution. The results were as follows, 198.22 g of Ginkgo biloba extracts was produced, which contained 65.83 g of flavonoids and 15.44 g of lactones. The content of flavonoids and lactones increased from 2.76 and 0.72% in the crude extract to 33.21 and 7.79%, with a recovery yield of 91.26 and 81.21%. Methodology validation showed that the proposed method had high stability and reproducibility. Compared with the traditional macroporous resin method, the proposed method had a short processing time and low solvent consumption. Our studies indicated that the newly developed method is an effective procedure for the isolation and enrichment of Ginkgo biloba extract.  相似文献   

5.
In this paper, macroporous resin column chromatography and counter‐current chromatography (CCC) were applied for large‐scale preparative separation of three flavonoids from the flower of Daphne genkwa, a famous Chinese medicinal herb. Nine kinds of resins were investigated by adsorption and desorption tests and D101 macroporous resin was selected for the first cleaning‐up, in which 40% aqueous ethanol was used to remove the undesired constituents and 90% aqueous ethanol was used to elute the targets. The crude extract after the first step was directly subjected to the preparative CCC purification using the solvent system composed of n‐hexane–ethyl acetate–methanol–water (4:5:4:5, v/v). The compounds apigemin (823 mg), 3‐hydroxyl‐genkwanin (842 mg) and genkwanin (998 mg) with the purities of 98.79, 97.71 and 93.53%, respectively, determined by HPLC were produced from 3‐g crude extract only in one CCC run. Their chemical structures were identified by MS, UV and the standards.  相似文献   

6.
步知思  何青  赵如诗  楚楚  李行诺  童胜强 《色谱》2017,35(9):1014-1021
该文建立了大孔树脂-高速逆流色谱分离中药材地黄中有效成分毛蕊花糖苷的方法。考察了4种大孔树脂对地黄粗提物中毛蕊花糖苷的静态吸附与解吸情况,其中D101大孔树脂对目标成分的吸附率与解吸率最理想,实验结果表明体积分数为10%的乙醇洗脱得到的毛蕊花糖苷含量最高,目标成分含量从4.9%提高到32.6%。最后,部分纯化的样品(165 mg)采用高速逆流色谱进一步纯化,两相溶剂系统由乙酸乙酯-正丁醇-水(1:4:5,v/v/v)组成,分离得到45 mg纯度为96%的毛蕊花糖苷。  相似文献   

7.
Fu B  Liu J  Li H  Li L  Lee FS  Wang X 《Journal of chromatography. A》2005,1089(1-2):18-24
Glycyrrhizic acid (GA) and licorice flavonoids (LF) are the two classes of bioactive components in licorice with known pharmacological effects. But long-term excessive intake of GA may cause sodium retention and hypertension. In this study, the performance and adsorption characteristics of four widely used macroporous resins for the separation of deglycyrrhizinated, flavonoids enriched licorice has been critically evaluated. The sorption and desorption properties of LF and GA on macroporous resins including XDA-1, LSA-10, D101 and LSA-20 have been compared. The adsorption capacity was found to depend strongly on the pH of the feed solution. XDA-1 offers much higher adsorption capacity for GA and LF than other resins, and its adsorption data fit the best to the Freundlich isotherm. XDA-1 also shows much higher adsorption affinity towards LF than that of GA based on calculated results from the measured adsorption isotherms. Dynamic adsorption and desorption experiments have been carried out on a XDA-1 resin packed column to obtain optimal parameters for separating GA and LF. An enriched LF extract (about 21.9% purity) free of GA, and an enriched GA extract with 66% purity can be separated from crude licorice extract in one run.  相似文献   

8.
Study on Adsorption and Separation of Naringin with Macroporous Resin   总被引:1,自引:0,他引:1  
X-5 resin, with higher adsorption and easier desorption of naringin, was selected from five kinds of macroporous resins through static adsorption and desorption experiments. Effects of concentration, pH value, and flow rate of naringin extract on the adsorption of naringin by X-5 resin were studied. Meanwhile, the effect of these factors on the desorption of naringin from X-5 resin was also investigated. The experimental results show that the adsorption isotherm of naringin by X-5 resin can be described by the Langmuir isotherm equation. The static maximum adsorption capacity of naringin is 32.6 mg/g with naringin concentration at 2.7 g/L, while the dynamic adsorption capacity of naringin is 23.8 mg/g with naringin extract flow rate at two times that of resin volume per hour. The optimal eluant is 60% (v/v) ethanol-water with pH value of 10. The desorption ratio will rise to more than 85% when the flow rate of this optimal eluant is one to two times that of resin volume per hour. Translated from Journal of Central South University (Science and Technology)  相似文献   

9.
In this paper, the combined techniques of macroporous resin column chromatography and high speed counter-current chromatography were applied for preparative separation of flavonoid triglycosides from the leaves of Actinidia valvata Dunn, a famous Chinese medicinal herb. Twelve kinds of macroporous resins were investigated by adsorption and desorption tests. HPD-300 resin showed the maximum effectiveness and thus was selected for the first cleaning-up, in which 20% ethanol was used to remove the undesired constituents and 60% ethanol to elute the targets. The crude extract was then purified by high speed counter-current chromatography with the solvent system composed of ethyl acetate-n-butanol-water (2:1:3 and 4:1:5, v/v). Three flavonoid triglycosides, namely, kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranoside, kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-(4-O-acetyl-α-L-rhamnopyranosyl)-(1→6)-β-D-galactopyranoside and kaempferol 3-O-α-L-rhamnopyranosyl-(1→3)-(2,4-di-O-acetyl-α-L-rhamnopyranosyl)-(1→6)-β-D-galactopyranoside, were obtained. The purities of the separated compounds were all over 95% as determined by HPLC area normalization method. Their chemical structures were confirmed by UV, MS, NMR, and the standards.  相似文献   

10.
大孔吸附树脂分离纯化金银花中黄酮类物质的研究   总被引:3,自引:0,他引:3  
比较了AB-8、S-8、NKA-9和D-101 4种大孔吸附树脂对金银花提取液中黄酮类物质的吸附及解吸附性能.在静态吸附试验基础上,筛选出效果较好的D-101树脂进行动态试验研究,结果表明,D-101树脂在30℃下对金银花黄酮类物质的静态吸附-动态解吸较优的工艺参数为:上样液pH值2.46,解吸液为95%乙醇,解吸液的流速为3mL/min,pH值11,4.5BV解吸液即可完全洗脱被树脂吸附的黄酮类物质,其解吸率高达98.00%.在试验研究范围内,树脂吸附金银花黄酮是自发性放热过程,并且符合Langmuir方程,此外树脂对黄酮的吸附动力学可用Pseudo-second-order模型较好地拟合,其表观吸附速率常数为Kso℃=3.43×10-2g/(mg·min).  相似文献   

11.
从X-5、D4020、AB-8、H1020、NKA-Ⅱ、HPD-100A、SIPI、HPD800和D3520大孔吸附树脂中筛选出H1020树脂,研究了其对迷迭香脂溶性总酚酸的静态与动态吸附和解吸性能.结果表明,H1020树脂对迷迭香脂溶性总酚酸的饱和吸附量为19.84mg/g干树脂,饱和吸附时间为3h,适宜的解吸荆为体积分数90%的乙醇溶液;以质量浓度为4.45m/mL的迷迭香提取液上柱,流速为1.0mL/min,当吸附平衡后,2.7BV体积分数90%的乙醇溶液可将吸附的总酚酸完全洗脱.经动态纯化后,脂溶性总酚酸质量分数从47.74%提高到70.46%,该组分清除DPPH自由基的IC50值为0.0469mg/mL.  相似文献   

12.
大孔吸附树脂法去除淫羊藿多糖中蛋白的研究   总被引:9,自引:0,他引:9  
从4种大孔吸附树脂中筛选出ADS-7, 考察了其对淫羊藿多糖中蛋白的去除作用, 并讨论了pH值、 鞣酸、 上样量等对树脂去蛋白效率的影响. 结果表明, 该方法对淫羊藿粗多糖中的蛋白具有较高的去除效率, 淫羊藿粗多糖中的蛋白含量由1.2%下降到0.035%.  相似文献   

13.
采用静态吸附法考察了D101、AB-8、NKA-2、NKA-9、HPD 100、HPD600等6种大孔吸附树脂对(R,S)-告依春的吸附及解吸性能,筛选出效果最佳的AB-8树脂,并对其进行动态考察.最佳富集条件为:上样液pH 6,生药质量-体积浓度为0.200g/mL,解吸液为2BV量70%乙醇,在优化条件下(R,S)-告依春在浸膏中含量可从0.76%提高到12.48%.结果表明,AB-8型大孔吸附树脂可用来从板蓝根水提取液中富集(R,S)-告依春.  相似文献   

14.
通过静态吸附平衡和动态柱吸附试验,研究了自制大孔交联聚(对乙烯基苄基脲)树脂(简称PMVBU树脂)对银杏叶黄酮的吸附性能.结果表明,在pH=5.00时,该树脂对银杏叶黄酮有较好的吸附性能;PMVBU树脂对黄酮的吸附等温线符合Langmuir吸附等温方程,相关系数R^2〉0.99.308K时,PMVBU干树脂对黄酮的静态饱和吸附量达293.3mg/g.298K时,干树脂的动态吸附穿透容量为180mg/g.用75%的乙醇溶液对吸附在PMVBU树脂上的黄酮可进行有效洗脱.银杏叶提取液经过该树脂吸附柱吸附纯化后,黄酮纯度提高了18.6%,且树脂具有良好的重复使用性.  相似文献   

15.
The flavonoid phlorhizin is abundant in the leaves of Sweet Tea (ST, Lithocarpus Polystachyus Rehd). Phlorhizin was preparatively separated and purified from a crude ST extract containing 40% total flavonoids by static adsorption and dynamic desorption on ADS-7 macroporous resin and neutral alumina column chromatography. Only water and ethanol were used as solvents and eluants throughout the whole separation and purification process. Using a phlorhizin standard as the reference compound, the target compound separated from the crude ST extracts was analyzed by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (EIS-MS) and identified as 99.87% pure (by HPLC-UV) phlorhizin. The results showed that 10 g of the target compound could be obtained from 40 g of the crude extracts in a single operation, indicating a 40% recovery. Therefore, this represents an efficient and environmentally-friendly technology for separating and purifying phlorhizin from ST leaves.  相似文献   

16.
HPD-750树脂是中极性大孔吸附树脂,生物相容性好,机械性能稳定,具有较大的比表面积,可用于固定化酶载体材料。本文以HPD-750大孔树脂为载体固定化果胶酶,研究各因素对固定化酶的影响,并采用正交试验对固定化条件进行优化。结果表明,当pH为4.0、固定化温度为45℃、固定化时间为4h、加酶量为0.16g/mL时,固定化酶活力可达5146U/mg。以HPD-750大孔树脂为载体材料制备的固定化酶相较于游离酶具有更好的酸碱稳定性和热稳定性。在循环使用10次后,酶活力依然保留80%以上;4℃储藏25d之后,其酶活力仍保留60%以上。与D311大孔树脂、聚丙烯酰胺和海藻酸钠微球制备的固定化酶相比,HPD-750大孔树脂固定化酶的活性、操作稳定性、机械稳定性和储存稳定性都较好。该结果说明,HPD-750大孔树脂可作为固定化酶较好的载体材料。  相似文献   

17.
In recent years, ionic liquids have become increasingly attractive as ‘green solvents’ used in the extraction of bioactive compounds from natural plant. However, the separation of ionic liquid from the target compounds was difficult, due to their low vapour pressure and high stabilities. In our study, ionic liquid‐based ultrasonic and microwave‐assisted extraction was used to obtain the crude tannins, then the macroporous resin adsorption technology was further employed to purify the tannins and remove the ionic liquid from crude extract. The results showed that XDA‐6 had higher separation efficiency than other tested resins, and the equilibrium experimental data were well fitted to Langmuir isotherms. Dynamic adsorption and desorption were performed on XDA‐6 packed in glass columns to optimise the separation process. The optimum conditions as follows: the ratio of column height to diameter bed was 1:8, flow rate 1 BV/h (bed volume per hour), 85% ethanol was used as eluant while the elution volume was 2 BV. Under the optimised conditions, the adsorption and desoption rate of tannins in XDA‐6 were 94.81 and 91.63%, respectively. The content of tannins was increased from 70.24% in Galla chinensis extract to 85.12% with a recovery of 99.06%. The result of ultra‐performance liquid chromatography (UPLC)‐MS/MS analysis showed that [bmim]Br could be removed from extract.  相似文献   

18.
大孔吸附树脂对辣椒素类物质的富集   总被引:1,自引:0,他引:1  
辣椒;辣椒素;辣椒素类物质;吸附树脂;分离  相似文献   

19.
大孔吸附树脂对款冬花总黄酮的吸附分离特性   总被引:1,自引:0,他引:1  
选择6种大孔吸附树脂,比较其对款冬花总黄酮的吸附量,解吸率及吸附动力学特性,筛选出较优的款冬花黄酮吸附树脂.结果表明:在静态吸附和动态吸附实验中均以SP825具有较优的吸附和解吸效果.  相似文献   

20.
Kuding tea are used as a traditional tea material and widely consumed in China. Isochlorogenic acids are considered to be one of the major functional ingredients. In this study, nine types of resins including six macroporous resins and three MCI-GEL resins were investigated by adsorption and desorption tests toward the isochlorogenic acids. The HP50SS was selected as the optimal one and the effect of several factors were investigated to make optimization of the adsorption and desorption conditions for enrichment of isochlorogenic acids. As a result, 38.50?mg of refined extract including 31.70?mg total isochlorogenic acids could be separated and enriched from 500.0?mg of crude extract in which the content of total isochlorogenic acids was 8.6% and the recovery of isochlorogenic acids reached 73.4%. Meanwhile, under optimal dynamic adsorption and desorption conditions, the final contents of total isochlorogenic acids increased 9.3-fold when compared to that of crude extract in a scale-up enriched experiment. The results demonstrated that the HP50SS MCI-GEL resin was suitable for purification and enrichment of isochlorogenic acids from Kuding tea. The established protocol was high-efficiency, low-cost and environment-friendly, which could afford a potential approach for industrial applications to enrich and concentrate isochlorogenic acids from Kuding tea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号