首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Using the divided electrode condenser it was possible to detect the large ion groups formed when small amounts of N2O gas were mixed with atmospheric air. Eight groups appeared with mobilities ranging from 12.50×10–4 to 0.60×10–4 cm/sec: volt/cm. When using the whole electrode condenser the results showed an increase in the total ion concentration of these large ions when small amounts of N2O gas were mixed with air. The results obtained in this work confirm that N2O gas acts as a nucleus for condensation which is changed into a large ion by appropriating an electrical charge.  相似文献   

2.
ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO)   总被引:1,自引:0,他引:1  
In the present study, a stationary stochastic ARMA/ARIMA [Autoregressive Moving (Integrated) Average] modelling approach has been adapted to forecast daily mean ambient air pollutants (O3, CO, NO and NO2) concentration at an urban traffic site (ITO) of Delhi, India. Suitable variance stabilizing transformation has been applied to each time series in order to make them covariance stationary in a consistent way. A combination of different information-criterions, namely, AIC (Akaike Information Criterion), HIC (Hannon–Quinn Information Criterion), BIC (Bayesian Information criterion), and FPE (Final Prediction Error) in addition to ACF (autocorrelation function) and PACF (partial autocorrelation function) inspection, has been tried out to obtain suitable orders of autoregressive (p) and moving average (q) parameters for the ARMA(p,q)/ARIMA(p,d,q) models. Forecasting performance of the selected ARMA(p,q)/ARIMA(p,d,q) models has been evaluated on the basis of MAPE (mean absolute percentage error), MAE (mean absolute error) and RMSE (root mean square error) indicators. For 20 out of sample forecasts, one step (i.e., one day) ahead MAPE for CO, NO2, NO and O3, have been found to be 13.6, 12.1, 21.8 and 24.1%, respectively. Given the stochastic nature of air pollutants data and in the light of earlier reported studies regarding air pollutants forecasts, the forecasting performance of the present approach is satisfactory and the suggested forecasting procedure can be effectively utilized for short term air quality forewarning purposes.  相似文献   

3.
Satellite observations of atmospheric CO2 are able to truly capture the variation of global and regional CO2 concentration.The model simulations based on atmospheric transport models can also assess variations of atmospheric CO2 concentrations in a continuous space and time,which is one of approaches for qualitatively and quantitatively studying the atmospheric transport mechanism and spatio-temporal variation of atmospheric CO2 in a global scale.Satellite observations and model simulations of CO2 offer us two different approaches to understand the atmospheric CO2.However,the difference between them has not been comprehensively compared and assessed for revealing the global and regional features of atmospheric CO2.In this study,we compared and assessed the spatio-temporal variation of atmospheric CO2 using two datasets of the column-averaged dry air mole fractions of atmospheric CO2(XCO2)in a year from June 2009 to May 2010,respectively from GOSAT retrievals(V02.xx)and from Goddard Earth Observing System-Chemistry(GEOS-Chem),which is a global 3-D chemistry transport model.In addition to the global comparison,we further compared and analyzed the difference of CO2 between the China land region and the United States(US)land region from two datasets,and demonstrated the reasonability and uncertainty of satellite observations and model simulations.The results show that the XCO2 retrieved from GOSAT is globally lower than GEOS-Chem model simulation by 2 ppm on average,which is close to the validation conclusion for GOSAT by ground measures.This difference of XCO2 between the two datasets,however,changes with the different regions.In China land region,the difference is large,from 0.6 to 5.6 ppm,whereas it is 1.6 to 3.7 ppm in the global land region and 1.4 to 2.7 ppm in the US land region.The goodness of fit test between the two datasets is 0.81 in the US land region,which is higher than that in the global land region(0.67)and China land region(0.68).The analysis results further indicate that the inconsistency of CO2concentration between satellite observations and model simulations in China is larger than that in the US and the globe.This inconsistency is related to the GOSAT retrieval error of CO2 caused by the interference among input parameters of satellite retrieval algorithm,and the uncertainty of driving parameters in GEOS-Chem model.  相似文献   

4.
对武山台1号泉气体资料显示,在1997-1999、2003年流量有几次明显的突变,同时气体组分O2 Ar、N2、He百分含量与流量呈完全同步变化.本文分析了造成流量突变的原因,认为流量大幅度变化不是自然动态的.同时用试验方法验证了影响气体组分O2 Ar、N2、He百分含量变化的主要因素是流量、冲流时间和空气混入了泉水,并分析了它们之间的相互关系及变化特点.  相似文献   

5.
海南三亚地区S4指数与C/N、ROTI的比较分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文通过利用海南三亚站(1834°N, 10962°E)GPS闪烁/TEC接收机2004年8月到2005年7月间观测数据,在对三亚地区闪烁初步统计分析的基础上,比较分析了观测数据中S4(幅度闪烁指数)和C/N(载噪比),S4和ROTI(TEC变化率标准差)的关系,同时对2004年11月7日的闪烁事件进行了具体的分析. 通过比较分析得出:(1)三亚地区全年的闪烁强度具有明显的半年变化,在春秋季出现全年闪烁强度的最大值;(2)S4与C/N具有很好的负相关性;(3)ROTI可以作为由小尺度不规则结构引起闪烁出现的指示剂.  相似文献   

6.
本文通过利用海南三亚站(1834°N, 10962°E)GPS闪烁/TEC接收机2004年8月到2005年7月间观测数据,在对三亚地区闪烁初步统计分析的基础上,比较分析了观测数据中S4(幅度闪烁指数)和C/N(载噪比),S4和ROTI(TEC变化率标准差)的关系,同时对2004年11月7日的闪烁事件进行了具体的分析. 通过比较分析得出:(1)三亚地区全年的闪烁强度具有明显的半年变化,在春秋季出现全年闪烁强度的最大值;(2)S4与C/N具有很好的负相关性;(3)ROTI可以作为由小尺度不规则结构引起闪烁出现的指示剂.  相似文献   

7.
Using digital ionosonde observations at low-latitude station, Delhi (28.6 N, 77.2 E, mag. dip 42.4 N), the diurnal and seasonal variations of the critical frequency of F2 layer (foF2) are analyzed from August 2000 to July 2001 during a high solar activity period. Also, noontime bottomside electron density (Ne-h) profiles, below the F2-peak, are derived from ionogram, using the POLAN (Report UAG-93, WDC-A, for Solar Terrestrial Physics, Boulder, Co.) program during the same period, and these profiles are then normalized to the peak height and density (hmF2, NmF2) of the F2-region. These observations are used to assess the predictability of the International Reference Ionosphere, IRI-2000 model (Radio Sc. 36(2) (2001) 261). Results show in general, a large variability, (1σ, σ is standard deviation), in foF2 during nighttime than daytime during winter and equinox, the variability of foF2 about the mean is about ±25% by night and ±15% by day. The IRI model shows a fairly good agreement with foF2 observations during daytime, however during nighttime, the discrepancies between the two exist. Comparative studies of the normalized observed profiles with those obtained with the IRI model (Bilitza, 2001) using both the options namely: Gulyaeva's (Adv. Space Res. 7 (1987) 39) model and B0-Table (Adv. Space Res. 25(1) (2000) 89), show that during all the seasons, in general, the B0-Tab option, reveals a better agreement with the observations, while the IRI model using Gulyaeva's option, overestimates the electron density distribution during summer and equinox, however, during winter, the model is close to the observations. The comparisons of average profile shape parameters (B0,B1) derived from noontime observed profiles, with those obtained, using B0-Tab option, in the IRI model, show a good agreement during all the seasons. However, B0, B1 obtained, using Gulyaeva's option in the IRI model, show a disagreement with the derived B0, B1 values during all the seasons, except during winter, for B0 parameter.  相似文献   

8.
Clarification of the molecular mechanism underlying the interaction of coal with CH4, CO2, and H2O molecules is the basis for an in-depth understanding of the states of fluid in coal and fluid-induced coal swelling/contraction. In terms of instrumental analysis, molecular simulation technology based on molecular mechanics/dynamics and quantum chemistry is a powerful tool for revealing the relationship between the structure and properties of a substance and understanding the interaction mechanisms of physical-chemical systems. In this study, the giant canonical ensemble Monte Carlo (GCMC) and molecular dynamics (MD) methods were applied to investigate the adsorption behavior of a Yanzhou coal model (C222H185N3O17S5). We explored the adsorption amounts of CH4, CO2, and H2O onto Yanzhou coal, the adsorption conformation, and the impact of oxygen-containing functional groups. Furthermore, we revealed the different adsorption mechanisms of the three substances using isosteric heat of adsorption and energy change data. (1) The adsorption isotherms of the mono-component CH4, CO2, and H2O were consistent with the Langmuir model, and their adsorption amounts showed an order of CH4<CO2<H2O. In addition, high temperatures were non-conducive to adsorption. When the three components of CH4/CO2/H2O were mixed (at a molar ratio of 1:1:1) for adsorption, only the adsorption curve of H2O was consistent with the Langmuir model. (2) The mean values of the isosteric heat of adsorption of CH4, CO2, and H2O were 22.54, 36.90, and 37.82 kJ/mol, respectively; that is, H2O>CO2>CH4. In addition, at higher temperatures, the isosteric heat of adsorption decreased; pressure had no significant effect on the heat of adsorption. (3) CH4 molecules displayed an aggregated distribution in the pores, whereas CO2 molecules were cross arranged in pairs. Regarding H2O molecules, under the influence of hydrogen bonds, the O atom pointed to surrounding H2O molecules or the H atoms of coal molecules in a regular pattern. The intermolecular distances of the three substances were 0.421, 0.553, and 0.290 nm, respectively. The radial distribution function (RDF) analysis showed that H2O molecules were arranged in the most compact fashion, forming a tight molecular layer. (4) H2O molecules showed a significantly stratified distribution around oxygen-containing functional groups on the coal surface, and the bonding strength showed a descending order of hydroxyl> carboxyl>carbonyl. In contrast, CO2 and CH4 showed only slightly stratified distributions. (5) After the adsorption of CH4, CO2, and H2O, the total energy, the energy of valence electrons, and the non-bonding interaction of the system in the Yanzhou coal model all decreased. The results regarding the decrease in the total energy of the system indicated an order of H2O>CO2>CH4 in terms of the adsorption priority of the Yanzhou coal model. The results regarding the decrease in the energy of valence electrons showed that under certain geological conditions, a pressure-induced “coal strain” could lead to a structural rearrangement during the interaction of coal with fluid to form a more stable conformation, which might be the molecular mechanism of coal swelling resulting from the interaction between fluid and coal. An analysis of the contribution of Van der Waals forces, electrostatic interactions and hydrogen bonds to the decrease in non-bonding interactions revealed the mechanism underlying the interactions between coal molecules and the three substances. The interaction between coal molecules and CH4 consisted of typical physical adsorption, whereas that between coal molecules and CO2 consisted mainly of physical adsorption combined with weak chemical adsorption. The interaction between coal molecules and H2O is physical and chemical.  相似文献   

9.
We compare numerical results obtained from a steady-state MHD model of solar wind flow past the terrestrial magnetosphere with documented observations made by the AMPTE/IRM spacecraft on 24 October, 1985, during an inbound crossing of the magnetosheath. Observations indicate that steady conditions prevailed during this about 4 hour-long crossing. The magnetic shear at spacecraft entry into the magnetosphere was 15°. A steady density decrease and a concomitant magnetic field pile-up were observed during the 40 min interval just preceding the magnetopause crossing. In this plasma depletion layer (1) the plasma beta dropped to values below unity; (2) the flow speed tangential to the magnetopause was enhanced; and (3) the local magnetic field and velocity vectors became increasingly more orthogonal to each other as the magnetopause was approached (Phan et al., 1994). We model parameter variations along a spacecraft orbit approximating that of AMPTE/IRM, which was at slightly southern GSE latitudes and about 1.5 h postnoon Local Time. We model the magnetopause as a tangential discontinuity, as suggested by the observations, and take as input solar wind parameters those measured by AMPTE/IRM just prior to its bow shock crossing. We find that computed field and plasma profiles across the magnetosheath and plasma depletion layer match all observations closely. Theoretical predictions on stagnation line flow near this low-shear magnetopause are confirmed by the experimental findings. Our theory does not give, and the data on this pass do not show, any localized density enhancements in the inner magnetosheath region just outside the plasma depletion layer.  相似文献   

10.
A three-dimensional primitive-equation model is used to simulate the Long Island Sound (LIS) outflow for a 1-year (2001) period. The model domain includes LIS and New York Bight (NYB). Tidal and wind forcing are included, and seasonal salinity and temperature variations are assimilated. The model results are validated with the HF radar, moored acoustic Doppler current profiler (ADCP), and ferry-based ADCP observations. The agreement between simulated and observed flow patterns generally is very good. The difference in seasonal mean currents between the model and moored ADCP is about 0.01 m/s; the correlation of dominant velocity fluctuations between the model and HF radar is 0.83; and the difference in mean LIS transport between the model and shipboard ADCP is about 5%. However, the model predicts a prominent tidally generated headland eddy not supported by the HF radar observation. The model sensitivity study indicates that the tides, winds, and ambient coastal front all have important impact on the buoyant outflow. The tides and winds cause stronger vertical mixing, which reduces the surface plume strength. The ambient coastal front, on the other hand, tends to enhance the plume.  相似文献   

11.
利用1988~1999年欧洲非相干散射EISCAT(European Incoherent Scatter)雷达观测数据,对不同太阳活动周相、不同季节的极光椭圆区电离层F区电子密度进行统计分析,研究其气候学特征,并与IRI-2001模式比较.EISCAT观测到的电子密度显示出显著的太阳活动高年“冬季异常”和太阳活动低年半年变化等现象.EISCAT实测电子密度随时间和高度的平均二维分布和500 km高度以下总电子含量TEC,从总体来看与IRI-2001模式预测结果符合较好.但高年在TEC达到最大值前后,IRI-2001模式预测的电子密度高度剖面与EISCAT观测结果有显著差别:F2峰以上IRI-2001模式预测的电子密度过大,造成TEC明显高于雷达观测值.另外,在太阳活动下降相,EISCAT观测显示出明显的半年周期季节变化特征,但IRI-2001模式未能预测出此下降相季节变化.  相似文献   

12.
The flow of energy from the Sun, through the atmosphere, to the Earth's surface and oceans, and ultimately back to space, controls the weather and climate of the planet. Since the dawn of the Space Age, the energy balance of the planet has been measured by orbiting satellites. Over the past 40 years the technology and the scientific understanding have developed to the point where we can measure not only the energy balance of the entire Earth and its atmosphere but also of the various regions of the atmosphere including the troposphere, the stratosphere, and the mesosphere. With the planned space-based observations of the sources and sinks of energy in the mesosphere, the energy balance of this region of the atmosphere may soon be better understood from observations than the energy balance of the troposphere on seasonal to annual timescales. Fundamental to this assertion is the fact that the primary sources and sinks of radiative and chemical potential energy, the thermal structure, and the winds in the mesosphere are to be directly observed by space-based instrumentation at high vertical resolution, in contrast to the troposphere. In this paper we review some of the planned measurements of the energy budgets of the atmosphere from existing and future space-based platforms. We particularly show how the airglow can be used to determine many of the key sources of energy in the mesosphere. These ideas provide the basis for interpretation of new space-based measurements of the mesosphere planned in the near future.  相似文献   

13.
A discharge flow apparatus with chemiluminescence detector has been used to study the reaction O + ClO --> Cl + O2, where O2 = O2(a1 delta g) or O2(b1 sigma+ g). The measured quantum yields for producing O2(a1 delta g) and O2(b1 sigma+ g) in the above reaction are less than 2.5 x 10(-2) and equal to (4.4 +/- 1.1) x 10(-4), respectively. The observed O2(a1 delta g) airglow of Venus cannot be explained in the context of standard photochemistry using our experimental results and those reported in recent literature. The possibility of an alternative source of O atoms derived from SO2 photolysis in the mesosphere of Venus is suggested.  相似文献   

14.
火星逃逸层中性成分经光致电离、电荷交换和电子碰撞产生新生离子,新生离子随即被太阳风和火星磁鞘电磁场拾起,称为"拾起"离子.已有观测表明拾起氧离子(O+)在朝向火星沉降途中会被反射,但发生反射的空间位置和反射机制尚不十分明确.若反射离子持续进入探测器,将为我们追踪反射发生的空间位置提供重要机遇.本文将报道这样一个观测实例,2016年9月25日04:18:30—04:24:54 UT期间,火星大气和挥发物演化任务(Mars Atmosphere and Volatile EvolutioN,MAVEN)运行在-E半球(对流电场E指向火星)的磁鞘区,轨道高度逐渐降低,持续观测到背离火星运动的O+(103~104 eV)束流,即正在反射的拾起O+.反射拾起O+大致可分为两部分:相空间密度较高、能量较低的部分是由磁鞘拾起O+被反射后形成;相空间密度较低、能量较高的部分则源于太阳风拾起O+发生反射后形成.我们推断反射发生在感应磁层边界附近的强磁场区域.  相似文献   

15.
16.
The irregularity analysis of exceedance time series of gaseous pollutants CO, NO2 and O3 is carried out using Shannon entropy and Fisher information measure. The data observed during 2007–2010 at three sites with different land-use activities in Delhi are analyzed. CO and NO2 showed irregular behavior at both, low anthropogenic activity and commercial activity sites, whereas at traffic site both the pollutant concentrations showed regular behavior. The irregularity is attributed to the multiplicity in emission sources at low activity and commercial site and regular behavior is observed due to the uniformity and well defined source characteristics at the traffic site. O3 at three sites showed irregular behavior owing to its secondary nature. Fisher–Shannon information plane showed the grouping of three pollutants except CO and NO2 at traffic and O3 at low activity site suggesting the similar temporal characteristics of the pollutants even at the sites with different land-use activities.  相似文献   

17.
Ambient concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at 51 sampling points by passive sampling technique in Kocaeli, an important industrial city in Turkey. Samples were analyzed by UV‐spectrophotometry for NO2 and O3 and by ion chromatography for SO2, respectively. Concentrations of SO2, NO2, and O3 were determined to investigate their spatial distribution and source characterization. The sampling campaigns revealed an average concentration of 8 µg/m3 (max. 82 µg/m3) for SO2, and 14 µg/m3 (max. 40 µg/m3) for NO2, in summer; while average winter concentrations were 25 µg/m3 (max. 61 µg/m3) for SO2, and 50 µg/m3 (max. 100 µg/m3) for NO2. The maximum ozone concentrations were determined to be 86 µg/m3 in summer and 61 µg/m3 in winter downwind of the source areas of the precursor pollutant emissions. The results showed that NO2 and SO2 concentrations in industrial and urban areas were two to four times higher compared with rural areas in the summer and winter. In the light of the information obtained from the spatial interpolation of the pollutant concentrations, a selection of appropriate locations for continuous monitoring was suggested according to the European Community (EU) directives.  相似文献   

18.
Introduction The tidal variation signals of the solid Earth recorded with the modern measuring techniques can be used to provide effectively the means to cognize the Earths motion, deformation and structure character, especially to monitor the material motion in the Earths interior. In the recent 20 years, the distribution character of the global gravity field has made great progress since the continuous and deep theoretical studies in geophysics and geodesy domains. The successful manufactur…  相似文献   

19.
Multivariate statistical techniques, cluster and factor analyses were applied on the Amman/Wadi Sir groundwater chemistry, Yarmouk River basin, north Jordan. The main objective was to investigate the main processes affecting the groundwater chemical quality and its evolution. The k‐means cluster analysis yields three groups with distinct ionic concentrations. Cluster 1 comprises the vast majority of the sampled wells, and the water that belongs to this cluster can be classified as freshwater. Cluster 2 comprises only 2% of the sampled wells; it has the highest ionic concentration. The water of this cluster can be classified as brackish water. Cluster 3 involves 23% of the sampled wells, and it has total ionic concentration intermediate to that of clusters 1 and 2. Factor analysis yields a three‐factor model, which explains 76.77% of the groundwater quality variation. Factor 1 ‘salinity factor’ involves EC, Na+, Cl, SO4‐2, K+ and Mg+2 and reflects groundwater salinization because of overpumping. Factor 2 ‘hardness factor’ includes Ca+2, HCO3 and the pH value and signifies soil–water/rock interaction. Factor 3 ‘nitrate factor’ involves only NO3 and points to groundwater contamination because of human activities, mainly untreated wastewater, and crops and animal cultivation in the unconfined portion of the aquifer. Factors 1 and 3 can be described as human‐induced factors, whereas factor 2 can be described as geogenic factor. Factors' scores were mapped to deduce the controlling processes on the groundwater chemistry. Stable isotope composition of 18O and 2H has revealed that the groundwater is a mixture of two water types. The radioactive isotopes tritium and 14 C were used to evaluate present day recharge to the aquifer and to estimate the groundwater age, respectively. Present day recharge to the groundwater is taking place in the unconfined portion of the aquifer as it is indicated by the measurable tritium content and low groundwater age. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In a companion paper local transfer functions were estimated at Tecoman using earthquake and microtremor data. In this paper, the subsoil structure at this city is investigated using seismic refraction and cross-correlation of noise records as a case study. P- and S-wave refraction profiles were measured at five sites within the city. Standard analysis constrained only very shallow layers. The P-wave refraction deployment was also used to record ambient vibration. These data were processed using an extension of the SPAC (SPatial AutoCorrelation (Aki, 1957) [1]) method; cross-correlation is computed between station pairs and the results are inverted to obtain a phase velocity dispersion curve. Penetration depth was larger than that from the refraction experiments but the shear-wave velocity of the basement could not be determined. For this reason, additional microtremor measurements were made using broad band seismometers with a larger spacing between stations. The results allowed to constrain the shear-wave velocity of the basement. Site amplification computed for the final profiles compare well with observed ground motion amplification at Tecoman. The case of Tecoman illustrates that even a simple subsoil structure may require crossing data from different experiments to correctly constrain site effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号