首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium diboride (TiB2) was hot-pressed at a temperature of 1800°C, and silicon nitride (Si3N4) was added as a sintering aid. The amount of Si3N4 that was added had a significant influence on the sinterability and mechanical properties of the TiB2. When a small amount (2.5 wt%) of Si3N4 was added, the Si3N4 reacted with titania (TiO2) that was present on the surface of the TiB2 powder to form titanium nitride (TiN), boron nitride (BN), and amorphous silica (SiO2). The elimination of TiO2 suppressed the grain growth effectively, which led to an improvement in the densification of TiB2. The formation of SiO2 also was deemed beneficial for densification. The mechanical properties-especially, the flexural strength-were enhanced remarkably through these improvements in the sinterability and microstructure. On the other hand, when a large amount (greaterthan equal to5 wt%) of Si3N4 was added, the mechanical properties were not improved much, presumably because of the extensive formation of a glassy Si-Ti-O-N phase at the grain boundaries.  相似文献   

2.
Hot pressing of TiB2 has been investigated with particular emphasis on the evolution of secondary phases originating from the initial surface oxide layer on the TiB2 powders. Carbothermal reduction of the surface oxides during sintering was also investigated by adding carbon to the TiB2 powder. TiO1− x C x was shown to be the main secondary phase in hot-pressed TiB2, and carbon was shown to strongly influence on sintering process and the amount, composition and distribution of the secondary phase TiO1− x C x . The formation of TiO1− x C x is discussed in relation to volatile boron oxide, which reacts with the graphite die to produce CO gas, which further may cause transport of carbon into TiB2 during sintering before pore closure. Finally it was demonstrated that the density could be controlled by addition of carbon to the TiB2 powder.  相似文献   

3.
The spontaneous microcracking of particulate TiB2–SiC composites is studied as a function of TiB2 volume fraction. The degree of microcracking was examined by measuring elastic properties from room temperature to 1300°C. The results showed that only one composition contains microcracks. All other compositions did not microcrack regardless of TiB2 volume fraction. This was attributed to the difference in the sintering aids. In particular, the Al2O3 sintering aid needed in these compositions had reacted with SiO2 to form an amorphous grain boundary phase that allowed residual stresses to relax by viscous flow at moderate to high temperatures. The existence of this amorphous grain boundary phase was directly observed by transmission electron microscopy.  相似文献   

4.
Equilibrium relations in the system NiO–TiO2–SiO2 in air have been investigated in the temperature range 1430° to 1660°C. The most conspicuous feature of the phase relations is the existence of a cation-excess spinel-type phase, in addition to NiO and NiTiO3, on the liquidus surface and at subsolidus temperatures down to 1430°C. Three invariant points have been located on the liquidus. There is a peritectic at 1540°C characterized by coexisting NiO ( ss ), spinel( ss ), cristobalite, and liquid of composition 47 wt% NiO, 29 wt% TiO2, and 24 wt% SiO2. Two eutectics are present, one at 1480°C, with spinel( ss ), NiTiO3, cristobalite, and liquid (42 wt% NiO, 43 wt% TiO2, and 15 wt% SiO2), as the coexisting phases. The other is at 1490°C with NiTiO3, rutile, cristobalite, and liquid (32 wt% NiO, 56 wt% TiO2, and 12 wt% SiO2). A liquid miscibility gap extends across the diagram from the two bounding binary systems NiO–SiO2 and TiO2–SiO2.  相似文献   

5.
This paper describes the effects that the particle size of Ti(CN) and TiB2 powder, oxygen content of the TiB2 powder, and Co impurity content in the starting raw materials have on the porosity and bending strength ofTi(CN)-30% TiB2 materials obtained by ordinary sintering.  相似文献   

6.
The effects of various liquid-phase sintering aids on (Pb0.6SrO0.4)TiO3 ceramics have been investigated. The relationships between electrical properties and microstructures have been scrutinized. It has been found that, among the sintering aids studied, only SiO2 exhibits a significant effect on the grain growth of (Pb0.6SrO4)TiO3. The optimum firing profiles for sound microstructure and good electrical properties of (Pb0.6SrO0.4)TiO3+ 5.0 mol% SiO2 have been established. The V-shaped electrical behavior is prominent, and a PTCR jump of about 102.9 is observed. The formation of cation vacancies may increase the resistivity of the over-fired specimens. Various milling methods to pulverize the calcined powder and the optimum amount of packing protection powder during sintering are also discussed.  相似文献   

7.
The Ti + 2B exothermic chemical reaction was used in combination with a high-velocity forging step to produce dense TiB2-(20 vol%)SiC composites. Densities in excess of 96 % of the theoretical were achieved for both SiC particulate and fiber additions. X-ray diffractometry revealed the products of the reaction to be TiB2 and SiC. The microstructures are composed of spheroidal TiB2 phase, a highly contiguous SiC binder phase, and an apparent eutectic between TiB2 and SiC located at regions of preexisting SiC additions. These microstructural features suggest that SiC underwent a peritectic phase transformation. Thermodynamic analysis predicts that at least 41 vol% SiC addition is needed to prevent the loss of the starting morphologies by the peritectic reaction.  相似文献   

8.
The densification of non-oxide ceramics like titanium boride (TiB2) has always been a major challenge. The use of metallic binders to obtain a high density in liquid phase-sintered borides is investigated and reported. However, a non-metallic sintering additive needs to be used to obtain dense borides for high-temperature applications. This contribution, for the first time, reports the sintering, microstructure, and properties of TiB2 materials densified using a MoSi2 sinter-additive. The densification experiments were carried out using a hot-pressing and pressureless sintering route. The binderless densification of monolithic TiB2 to 98% theoretical density with 2–5 μm grain size was achieved by hot pressing at 1800°C for 1 h in vacuum. The addition of 10–20 wt% MoSi2 enables us to achieve 97%–99%ρth in the composites at 1700°C under similar hot-pressing conditions. The densification mechanism is dominated by liquid-phase sintering in the presence of TiSi2. In the pressureless sintering route, a maximum of 90%ρth is achieved after sintering at 1900°C for 2 h in an (Ar+H2) atmosphere. The hot-pressed TiB2–10 wt% MoSi2 composites exhibit high Vickers hardness (∼26–27 GPa) and modest indentation toughness (∼4–5 MPa·m1/2).  相似文献   

9.
Formation of TiO2(B) Nanocrystallites in Sol-Gel-Derived SiO2-TiO2 Film   总被引:2,自引:0,他引:2  
TiO2(B), one of the polymorphs of TiO2, has been formed by annealing a sol-gel-derived SiO2-TiO2 amorphous film on a silicon wafer at 900°C in air. Transmission electron microscopy (TEM) revealed that nanocrystallites with a size of 5-10 nm were dispersed in the amorphous SiO2 matrix in the film. The X-ray diffraction pattern and lattice fringe spacing in high-resolution TEM images corresponded to those of TiO2(B). These TiO2(B) nanocrystallites are probably stable with the presence of surrounding SiO2 in the film at 900°C, because previous works reported that this phase should be converted to anatase at temperatures higher than 550-700°C.  相似文献   

10.
The influence of supports on the preparation of TiO2 nanoparticles by the adsorption phase technique is studied in detailed. Series temperature experiments of two types of supports (named as SiO2 A and B) were used. Energy-dispersive analysis by X-ray indicates that the concentration of TiO2 on both supports decreases with temperature increasing. TiO2 quantity on SiO2 A decreases sharply between 40° and 60°C, whereas the temperature range for SiO2 B is between 30° and 50°C. X-ray diffraction (XRD) shows that grain size of TiO2 particles on two SiO2 surfaces is all below 7 nm. It is also shown by XRD that particles on SiO2 A decrease sharply as in the quantity curve of TiO2, but particles on SiO2 B all change gradually and TiO2 particles on SiO2 B are more uniform in transmission electron spectroscopy. The similarly of both supports is considered to be the reason for the similar changes in Ti concentration, and the different characteristics of the internal/external surface lead to variant quantity and grain size, as well as characteristics of TiO2.  相似文献   

11.
The influence of co-additions of crystalline TiO2 and SiO2 fillers (10 wt% addition in total) to BaO–ZnO–B2O3–SiO2 glass on resultant properties was investigated from the viewpoint of applying the material to the barrier ribs of plasma display panels. The substitution of SiO2 for TiO2 reduced the dielectric constant significantly, while it maintained high optical reflectance and appropriate coefficient of thermal expansion (CTE) in the case when TiO2 alone was used. A 5–7.5 wt% SiO2 addition with 2.5–5 wt% TiO2 under the constraint of 10 wt% total fillers demonstrated an optical reflectance of about 55%, a CTE of about 8.3 × 10−6 K−1 (compatible with glass panels), and a dielectric constant of about 7.5, which are promising properties for the barrier rib application.  相似文献   

12.
Oxidation Behavior of Titanium Boride at Elevated Temperatures   总被引:3,自引:0,他引:3  
The oxidation behavior of dense TiB2 specimens was investigated. Hot-pressed TiB2 with 2.5 wt% Si3N4 as a sintering aid was exposed to air at temperatures between 800° and 1200°C for up to 10 h. The TiB2 exhibited two distinct oxidation behaviors depending on the temperature. At temperatures below 1000°C, parabolic weight gains were observed as a result of the formation of TiO2( s ) and B2O3( l ) on the surface. The oxidation layer comprised two layers: an inner layer of crystalline TiO2 and an outer layer mainly composed of B2O3. When the oxidation temperatures were higher than 1000°C, gaseous B2O3 was formed along with crystalline TiO2 by the oxidation process. In this case, the surface was covered with large TiO2 grains imbedded in a highly textured small TiO2 matrix.  相似文献   

13.
The microstructures of 5 wt% SiO2-doped TZP, 5 wt% (SiO2+ 2 wt% MgO)-doped TZP, and 5 wt% (SiO2+ 2 wt% Al2O3)-doped TZP are characterized by high-resolution electron microscopy, energy-dispersive X-ray spectroscopy, and electron energy loss spectroscopy. An amorphous phase is formed at multiple grain junctions but not along the grain-boundary faces in these three materials. A small addition of MgO and Al2O3 into the SiO2 phase results in a marked reduction in tensile ductility of SiO2-doped TZP. This reduction seems to correlate with segregation of magnesium or aluminum ions at grain boundaries and a resultant change in the chemical bonding state.  相似文献   

14.
Sinterability of undoped, MgO-doped, and TiO2-doped Al2O3 has been examined by applying reported sintering equations. The order of sinterability was MgO-doped ∼ undoped≪ TiO2-doped Al2O3 in the initial and intermediate stages of sintering, but a relative sintered density at 1600°C for 1 h occurred in the order undoped < TiO2-doped < MgO-doped AI2O3. The dispersion of thermal grooving angles increased in the order MgO-doped < undoped < TiO2-doped Al2O3, The change of sinterability by the dopants is explained in terms of mobility of mass transfer estimated from a densification rate in the initial- and intermediate-stage sintering and of dispersed driving forces of densification and grain growth qualitatively evaluated from the width of the dispersion of thermal grooving angles.  相似文献   

15.
The phase relations of the systems ZrO2–TiO2 and ZrO2–TiO2–SiO2 were investigated. X-ray diffraction techniques served as the principal means of analysis. The binary system ZrO2–TiO2 was found to be one of partial solid solutions with no intermediate compounds. A eutectic point was found to exist at 50 to 55 weight % ZrO2 and 1600°C. A preliminary investigation of the ternary system ZrO2–TiO2–SiO2, although not extensive, resulted in a better understanding of this system, with a fairly accurate location of some of its boundary lines. A eutectic point was located at 2% ZrO2, 10% TiO2, and 88% SiO2 at approximately 1500°C.  相似文献   

16.
Amorphous films in the system AlPO4–TiO2 were prepared by an rf-sputtering method, and their physical properties, such as density, refractive index, and thermal expansion coefficient, and the infrared absorption spectra were measured. The thermal expansion coefficient increased linearly with increasing TiO2 content. The results of the molar refractivity and the infrared absorption spectra indicated that the coordination number of titanium ions in these films is higher than that in SiO2–TiO2 glasses with a negative thermal expansion, in which Ti4+ ions are tetrahedrally coordinated. In order to confirm the coordination state of the titanium ions in these amorphous films, titanium K -band emission spectra were obtained by X-ray emission spectroscopy, revealing sixfold coordination. The higher coordination state of Ti4+ was considered to account for these amorphous films not exhibiting negative thermal expansion, as in the SiO2–TiO2 system.  相似文献   

17.
Advanced sintering techniques for consolidation of Si3N4 powders in the presence of an oxygen-rich liquid phase(s) require high temperatures and usually high nitrogen pressures. A stability diagram is constructed for Si3N4 as a function of the partial pressures of nitrogen (PN2) and silicon (PSi). High PN2 (20 to 100 atm) increases the stability of Si3N4 and the oxygen-rich liquid phase by reducing the PSi and PSi0, respectively. The region of high sinterability is outlined for submicrometer Si3N4 powders containing 7 wt% BeSiN2 and 7 wt% SiO2 as densification aids .  相似文献   

18.
The effects of liquid-phase sintering aids on the microstructures and PTCR characteristics of (Sr0.2Ba0.8)TiO3 materials have been studied. The grain size of sintered materials monotonically decreases with increasing content of Al2O3–SiO2–TiO2 (AST). The ultimate PTCR properties with ρhtrt as great as 105.61 are obtained for fine-grain (10-μm) samples, which contain 12.5 mol% AST and were sintered at 1350°C for 1.5 h. The quantity of liquid phase formed due to eutectic reaction between AST and (Sr,Ba)TiO3 is presumably the prime factor in determining the grain size of samples. The grains grow rapidly at the sintering temperature in the first stage until the liquid phase residing at the grain boundaries reaches certain critical thickness such that the liquid–solid interfacial energy dominates the mechanism of grain growth.  相似文献   

19.
Two high-purity Si3N4 materials were fabricated by hot isostatic pressing without the presence of sintering additives, using an amorphous laser-derived Si3N4 powder with different oxygen contents. High-resolution transmission electron microscopy and electron energy-loss spectroscopy (EELS) analysis of the Si3N4 materials showed the presence of an amorphous SiO2 grain-boundary phase in the three-grain junctions. Spatially resolved EELS analysis indicated the presence of a chemistry similar to silicon oxynitride at the two-grain junctions, which may be due to partial dissolution of nitrogen in the grain-boundary film. The chemical composition of the grain-boundary film was SiNxOy, (x ∼ 0.53 and y ∼ 1.23), and the triple pocket corresponded to the amorphous SiO2 containing ∼2 wt% nitrogen. The equilibrium grain-boundary-film thickness was measured and found to be smaller for the material with the lower oxygen content. This difference in thickness has been explained by the presence of the relatively larger calcium concentration in the material with the lower amount of SiO2 grain-boundary phase, because the concentration of foreign ions has been shown to affect the grain-boundary thickness.  相似文献   

20.
The sintering behavior and surface microstructure of PbNi1/3Nb2/3O3–PbTiO3–PbZrO3 (PNiNb-PT-PZ) ceramics were investigated. The PNiNb-PT-PZ ceramics with the stoichiometric composition and the addition of excess lead oxide (PbO-rich ceramics) were sintered by liquid-phase sintering in accordance with the solution-reprecipitation mechanism at temperatures below the melting point of PbO. The temperature at which the liquid phase forms fell to near the eutectic point of the PbO–Nb2O5 and the PbO–TiO2 system (868°C) with the addition of 5 mol% PbO. As the calcination temperature influenced the sinterability of the stoichiometric PNiNb-PT-PZ ceramic, unreacted PbO was considered to be the source of the liquid phase in the sintering of the stoichiometric powder. The secondary phase was observed at the surface of PbO-rich ceramics and was suggested to be a liquid phase expelled from inside the ceramic. A sintering scheme of PNiNb-PT-PZ ceramics was proposed, and the high sinterability of PNiNb-PT-PZ ceramics was attributed to the low formation temperature of the liquid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号