首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
High‐performance, all‐aromatic, insoluble, engineering thermoplastic polyimides, such as pyromellitic dianhydride and 4,4′‐oxydianiline (PMDA–ODA) (Kapton), exhibit exceptional thermal stability (up to ≈600 °C) and mechanical properties (Young's modulus exceeding 2 GPa). However, their thermal resistance, which is a consequence of the all‐aromatic molecular structure, prohibits processing using conventional techniques. Previous reports describe an energy‐intensive sintering technique as an alternative technique for processing polyimides with limited resolution and part fidelity. This study demonstrates the unprecedented 3D printing of PMDA–ODA using mask‐projection stereolithography, and the preparation of high‐resolution 3D structures without sacrificing bulk material properties. Synthesis of a soluble precursor polymer containing photo‐crosslinkable acrylate groups enables light‐induced, chemical crosslinking for spatial control in the gel state. Postprinting thermal treatment transforms the crosslinked precursor polymer to PMDA–ODA. The dimensional shrinkage is isotropic, and postprocessing preserves geometric integrity. Furthermore, large‐area mask‐projection scanning stereolithography demonstrates the scalability of 3D structures. These unique high‐performance 3D structures offer potential in fields ranging from water filtration and gas separation to automotive and aerospace technologies.  相似文献   

6.
7.
8.
Solid‐state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid‐state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D‐print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li7La3Zr2O12 solid electrolyte. Using these 3D‐printing ink formulations to further study and optimize electrolyte structure could lead to solid‐state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields.  相似文献   

9.
10.
The formulation of advanced molecular materials with bespoke polymeric ionic‐liquid matrices that stabilize and solubilize hybrid organic–inorganic polyoxometalates and allow their processing by additive manufacturing, is effectively demonstrated. The unique photo and redox properties of nanostructured polyoxometalates are translated across the scales (from molecular design to functional materials) to yield macroscopic functional devices with reversible photochromism. These properties open a range of potential applications including reversible information storage based on controlled topological and temporal reduction/oxidation of pre‐formed printed devices. This approach pushes the boundaries of 3D printing to the molecular limits, allowing the freedom of design enabled by 3D printing to be coupled with the molecular tuneability of polymerizable ionic liquids and the photoactivity and orbital engineering possible with hybrid polyoxometalates.  相似文献   

11.
3D printing has witnessed a new era in which highly complexed customized products become reality. Realizing its ultimate potential requires simultaneous attainment of both printing speed and product versatility. Among various printing techniques, digital light processing (DLP) stands out in its high speed but is limited to intractable light curable thermosets. Thermoplastic polymers, despite their reprocessibility that allows more options for further manipulation, are restricted to intrinsically slow printing methods such as fused deposition modeling. Extending DLP to thermoplastics is highly desirable, but is challenging due to the need to reach rapid liquid–solid separation during the printing process. Here, a successful attempt at DLP printing of thermoplastic polymers is reported, realized by controlling two competing kinetic processes (polymerization and polymer dissolution) simultaneously occurring during printing. With a selected monomer, 4‐acryloylmorpholine (ACMO), printing of thermoplastic 3D scaffolds is demonstrated, which can be further converted into various materials/devices utilizing its unique water‐soluble characteristic. The ultralow viscosity of ACMO, along with surface oxygen inhibition, allows rapid liquid flow toward high‐speed open‐air printing. The process simplicity, enabling mechanism, and material versatility broaden the scope of 3D printing in constructing functional 3D devices including reconfigurable antenna, shape‐shifting structures, and microfluidics.  相似文献   

12.
The present work reports the first demonstration of straightforward fabrication of monolithic unibody lab‐on‐a‐chip (ULOCs) integrating bioactive micrometric 3D scaffolds by means of multimaterial stereolithography (SL). To this end, a novel biotin‐conjugated photopolymer is successfully synthesized and optimally formulated to achieve high‐performance SL‐printing resolution, as demonstrated by the SL‐fabrication of biotinylated structures smaller than 100 µm. By optimizing a multimaterial single‐run SL‐based 3D‐printing process, such biotinylated microstructures are incorporated within perfusion microchambers whose excellent optical transparency enables real‐time optical microscopy analyses. Standard biotin‐binding assays confirm the existence of biotin‐heads on the surfaces of the embedded 3D microstructures and allow to demonstrate that the biofunctionality of biotin is not altered during the SL‐printing, thus making it exploitable for further conjugation with other biomolecules. As a step forward, an in‐line optical detection system is designed, prototyped via SL‐printing and serially connected to the perfusion microchambers through customized world‐to‐chip connectors. Such detection system is successfully employed to optically analyze the solution flowing out of the microchambers, thus enabling indirect quantification of the concentration of target interacting biomolecules. The successful application of this novel biofunctional photopolymer as SL‐material enables to greatly extend the versatility of SL to directly fabricate ULOCs with intrinsic biofunctionality.  相似文献   

13.
14.
Solution processing of conjugated polymers into ordered self‐assembled precursors has attracted great interest in the past years owing to the ability to manipulate their structural and physical properties. Regioregular poly(3‐hexylthiophene) (P3HT) has become the benchmark polymer in this scenario, where ordered lamellar structures significantly improve carrier mobility of the thin films due to increased crystallinity, extended intrachain conjugation, and ordered interchain π‐stacking. Here, a new photoinduced approach is presented for the generation of highly ordered P3HT aggregate structures that is amenable to the use of visible light to control the aggregate formation. Strong intra‐ and interchain interactions in the solution precursors allow for permanent formation of localized and delocalized polarons that are stable for months. Spin‐coated thin films are found to preserve, in part, the morphological and physical properties of the aggregated P3HT solution precursors with high degree of crystallinity and short π‐stack interchain distances.  相似文献   

15.
16.
17.
18.
19.
20.
通过熔融挤出法制备一种生物可降解缓冲包装材料聚己二酸/对苯二甲酸丁二酯,并测试其表观密度、热学性能、红外光谱及缓冲性能。利用正交实验的极差分析筛选出发泡最佳工艺,通过差示扫描量热分析仪、傅里叶变换红外光谱、质构仪分别测试缓冲包装材料的热学性能和缓冲性能。结果显示,最佳发泡工艺为发泡剂碳酸氢钠添加量为20%,发泡温度为140℃,发泡时间为25 min,其表观密度为0.18 g/cm~3;NaHCO_3在发泡材料中无残留;30 mm厚的缓冲材料缓冲效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号