首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
高分子因其优异的光学特性、良好的生物相容性和分子结构易于调控等优势,在光学诊疗领域表现出巨大应用潜力.然而,传统荧光分子的聚集导致荧光淬灭现象限制了其生物应用.聚集诱导发光(AIE)分子因其聚集态高效发光的优势而备受关注.本文从AIE高分子的构建出发,重点介绍了D-A型共轭聚合物的构建策略、构-效关系以及相对于小分子的性能和应用优势,并从生物成像、肿瘤诊疗和抗菌三个方面总结了AIE高分子在光学诊疗领域的最新研究进展.生物成像方面主要总结了NIR-Ⅱ区AIE高分子在深部组织高分辨率荧光成像中的应用;肿瘤诊疗方面主要介绍了AIE高分子在光动力治疗、光热治疗及联合治疗中的应用;以及介绍了AIE高分子在细菌感染光动力治疗中的应用.最后对AIE高分子在光学诊疗领域的未来发展前景进行了展望.  相似文献   

2.
聚集诱导发光(Aggregation-Induced Emission,AIE)分子是一类在聚集状态下表现出强烈荧光而在分散状态下荧光较弱甚至无荧光的分子。自2001年首例AIE分子被发现以来,各类新型AIE分子如雨后春笋般相继被开发出来,并在有机光电材料、荧光探针、生物成像等领域表现出非常广泛的应用。其中,水杨醛缩肼就是一类合成简单、荧光强度高的典型AIE分子。本论文介绍了利用Reimer-Tiemann反应合成水杨醛,并通过与水合肼反应进一步得到水杨醛缩肼AIE分子的方法。在本实验中,学生不但练习了经典Reimer-Tiemann反应的操作方法,同时也学习了水杨醛缩肼分子的AIE特性及其产生机理。结合拓展阅读,可使学生进一步了解AIE分子的应用。  相似文献   

3.
正聚集诱导发光(Aggregation-induced emission,AIE)现象在发光材料领域显示出巨大的应用价值和前景1,2。AIE分子荧光颜色的调控对于深入发展应用研究具有重要意义。一般而言,对包含AIE分子在内的发光物质荧光颜色的调控主要通过合成化学改变发光基团的取代基、共轭基团等来实现3,4。与此同时,科学家们也发现,AIE分子的发光与分子构象密切相关5,6。因为很多AIE分子具有螺旋桨式的空间结构,通过控制分子的构象能够调控不同基团之间的共轭程度,进而影响发光颜色。理论上讲,通过精确控制AIE分子的空间构象可以实现发光颜色的连续性变化。但迄今为止,人们还无法精确地控制这类分子的构象。  相似文献   

4.
具有聚集诱导发光(AIE)性质的有机荧光分子由于其扭曲的分子构型,在聚集态或固态表现出显著增强的荧光发射,避免了传统有机荧光分子的浓度猝灭现象,因而在光电器件、生物传感等领域有着广泛的应用.本文着重介绍了具有AIE性质的二苯乙烯基蒽(DSA)衍生物及其在高效固态发光材料、刺激响应材料、生物成像和生物与化学传感等领域的研究进展.  相似文献   

5.
聚集诱导发光(AIE)已经成为光物理和发光材料领域的研究热点.设计与合成新的AIE核心分子是该领域进一步发展的基础.在我们发展的、新的AIE核心分子四苯基吡嗪(TPP)的基础上,通过引入给电子的噻吩基团,设计合成了三个TPP的衍生物TPP-T、TPP-2T和T-TPP-T,并详细研究了三个分子的构效关系.结果表明三个分子均具有聚集荧光增强(AEE)效应,其粉末的最强发射峰分别位于418,437和436 nm处,属于蓝紫光和深蓝光发射,绝对荧光量子产率分别为26.8%,29.%和30.9%.结合其优异的热稳定性,这些TPP衍生物有望用于有机发光二极管(OLED)器件中的发光层.  相似文献   

6.
介绍了一种基于水杨醛希夫碱结构的荧光分子的合成方法及其聚集诱导发光(Aggregation-Induced Emission,AIE)性能研究。本实验中,学生将掌握希夫碱类化合物的制备方法、荧光的基本原理和应用,并直观了解AIE现象和传统荧光分子聚集诱导淬灭(Aggregation-Caused Quenching,ACQ)现象的差别。结合课堂教学和拓展阅读,使学生进一步了解AIE分子的结构特点和设计思路。  相似文献   

7.
聚集诱导发光分子的光电功能与器件应用   总被引:1,自引:0,他引:1  
光电功能分子通常以薄膜和聚集体的形式显示功能, 聚集诱导发光(AIE)分子体系的发现为解决固态下聚集诱导荧光猝灭(ACQ)难题提供了新的思路. 本文总结了近年来本课题组发展的一系列AIE 分子, 侧重介绍这些AIE 分子的光电功能与器件应用, 特别是在有机电致发光器件和有机激光方面的应用. AIE 材料显示非常高的电致发光效率, 在显示与白光器件方面潜力巨大. 在发展电泵有机激光方面, AIE 材料特点突出, 是最有前景的一类材料.  相似文献   

8.
对于公共安全中存在的安全隐患及时检测和预防有助于保护公民的身体健康和财产安全。荧光检测技术以其优异的选择性、高的灵敏度、快的响应速度引起了广泛的研究。聚集诱导发光(AIE)材料作为一种与聚集导致发光猝灭(ACQ)材料截然相反的新兴有机荧光材料,实现了发光分子在固态或是聚集态下的高荧光量子产率。而独特的AIE特性,使其不必担心由于分子聚集导致的荧光信号的降低或猝灭,同时由于分子聚集程度的增加引起荧光颜色和强度的变化,可以被用来实现对靶标物的定性和定量分析,为荧光分析检测提供了新的思路和方案。目前基于AIE的荧光检测方法及相关技术已经被广泛应用各个领域,其中在公共安全领域的研究表现突出,并取得较高的研究成果。本文分析总结了近几年来AIE分子在公共安全领域中的应用进展,包括爆炸性物质、指纹识别、毒品检测、食品安全等方面,并对目前存在的问题和应用前景进行了总结和展望。  相似文献   

9.
与传统的发光分子相比,具有聚集诱导发光(AIE)性质的分子,在聚集态或固态条件下,由于独特的分子结构和聚集态结构,表现出显著增强的荧光发射,因而在光电器件、生物化学检测等领域展现出广阔的应用前景。本文总结了二苯乙烯基蒽(DSA)及其衍生物的AIE性质,分析了DSA类分子AIE现象的机理,如分子内转动受限、扭曲的分子结构及分子间聚集结构等,同时介绍了此类分子在固态发光、刺激-响应材料,以及生物检测和生物成像等方面的应用。  相似文献   

10.
聚集诱导发光(AIE)材料因其独特的发光性能,已在荧光检测、生物成像及有机发光器件等领域展现出较为广阔的应用前景。本文综述了AIE材料在监测聚合物制备过程(本体聚合、溶液聚合、乳液聚合及悬浮聚合过程等)中的应用,介绍了利用AIE分子的荧光信号响应检测聚合物玻璃化转变温度、粘度、相分离程度、分子量等物理性能的研究,为AIE材料在聚合过程可视化监测及聚合物荧光功能化领域的应用提供了参考。最后对AIE材料在高分子科学研究中的应用前景进行了展望。  相似文献   

11.
Near-infrared (NIR) fluorescence imaging has improved imaging depth relative to conventional fluorescence imaging in the visible region, demonstrating great potential in both fundamental biomedical research and clinical practice. To improve the detection specificity, NIR fluorescence imaging probes have been under extensive development. This review summarizes the particular application of optical imaging probes with the NIR-I window (700–900 nm) or the NIR-II window (1000–1700 nm) emission for diagnosis of nephron-urological diseases. These molecular probes have enabled contrast-enhanced imaging of anatomical structures and physiological function as well as molecular imaging and early diagnosis of acute kidney injury, iatrogenic ureteral injury and bladder cancer. The design strategies of molecular probes are specifically elaborated along with representative imaging applications. The potential challenges and perspectives in this field are also discussed.

Near-infrared fluorescent molecular probes with improved imaging depth and optimized biodistribution have been reviewed, showing great potential for diagnosis of nephro-urological diseases.  相似文献   

12.
Near-infrared(NIR)lights are powerful tools to conduct deep-tissue imaging since NIR-Ⅰ wavelengths hold less photon absorption and NIR-Ⅱ wavelengths serve low photon scattering in the biological tissues compared with visible lights.Two-photon fluorescence lifetime microscopy(2PFLM)can utilize NIR-Ⅱ excitation and NIR-Ⅰ emission at the same time with the assistance of a well-designed fluorescent agent.Aggregation induced emission(AIE)dyes are famous for unique optical properties and could serve a large two-photon absorption(2PA)cross-section as aggregated dots.Herein,we report two-photon fluorescence lifetime microscopic imaging with NIR-Ⅱ excitation and NIR-Ⅰ emission using a novel deep-red AIE dye.The AIE-gens held a 2PA cross-section as large as 1.61×104GM at 1040 nm.Prepared AIE dots had a two-photon fluorescence peak at 790 nm and a stable lifetime of 2.2 ns under the excitation of 1040 nm femtosecond laser.The brain vessels of a living mouse were vividly reconstructed with the two-photon fluorescence lifetime information obtained by our home-made 2PFLM system.Abundant vessels as small as 3.17μm were still observed with a nice signal-background ratio at the depth of 750μm.Our work will inspire more insight into the improvement of the working wavelength of fluorescent agents and traditional 2PFLM.  相似文献   

13.
The concept of aggregation-induced emission (AIE) has opened new opportunities in many research fields. Motivated by the unique feature of AIE fluorogens (AIEgens), during the past decade, many AIE molecular probes and AIE nanoparticle (NP) probes have been developed for sensing, imaging and theranostic applications with excellent performance outperforming conventional fluorescent probes. This Review summarizes the latest advancement of AIE molecular probes and AIE NP probes and their emerging biomedical applications. Special focus is to reveal how the AIE probes are evolved with the development of new multifunctional AIEgens, and how new strategies have been developed to overcome the limitations of traditional AIE probes for more translational applications via fluorescence imaging, photoacoustic imaging and image-guided photodynamic/photothermal therapy. The outlook discusses the challenges and future opportunities for AIEgens to advance the biomedical field.  相似文献   

14.
The modern medicine requires precise diagnostic techniques while the fluorescent imaging shows great potential in such applications due to its excellent sensitivity and high resolution.However,conducting fluorescent imaging in deep-tissue is not so easy because most luminogens show short-wavelength excitation,which may undergo severe light scattering by the bio-tissue.The marriage of fluorescent imaging with nonlinear optical(NLO)effect can alleviate such adverse effects by utilizing NIR laser to reduce light scattering.On the other hand,scientists are enthusiastic in pursuing luminescent materials,which can match well with NLO application.Aggregation-induced emission(AIE)materials exhibit huge advantages in such aspect not only because of its high luminescent efficiency in aggregate state but also due to its excellent photo-stability(a key factor to meet laser application because of its ultrahigh energy density).Inspired by this,many interesting and meaningful works have sprung up based on AIE luminogens with NLO effect in recent years,and for such reason,it motivates us to summarize them to give a systematic presentation.Here,we first give a brief introduction of the principle of NLO effect.Secondly,the strategies for improving the NLO effect of AIE materials,such as increasing molecular conjugation,introduction of donor-acceptor effect,induction of centrally asymmetric array of AIE molecules in crystals and introduction of intermolecular interactions are clarified.In the final part,we also present the multiple applications of AIEgens with NLO effect in cell imaging,deep-tissue tumor and brain blood vessel imaging and photodynamic therapy.We believe,with this review,the topic will attract more attention from the scientists in multi-science field to accelerate the development of AIE materials in biomedical applications.  相似文献   

15.
The concept of aggregation‐induced emission (AIE) has opened new opportunities in many research fields. Motivated by the unique feature of AIE fluorogens (AIEgens), during the past decade, many AIE molecular probes and AIE nanoparticle (NP) probes have been developed for sensing, imaging and theranostic applications with excellent performance outperforming conventional fluorescent probes. This Review summarizes the latest advancement of AIE molecular probes and AIE NP probes and their emerging biomedical applications. Special focus is to reveal how the AIE probes are evolved with the development of new multifunctional AIEgens, and how new strategies have been developed to overcome the limitations of traditional AIE probes for more translational applications via fluorescence imaging, photoacoustic imaging and image‐guided photodynamic/photothermal therapy. The outlook discusses the challenges and future opportunities for AIEgens to advance the biomedical field.  相似文献   

16.
Near-infrared(NIR) fluorescent materials with high photoluminescent quantum yields(PLQYs) have wide application prospects. Therefore, we design and synthesize a D-A type NIR organic molecule, TPATHCNE, in which triphenylamine and thiophene are utilized as the donors and fumaronitrile is applied as the acceptor. We systematically investigate its molecular structure and photophysical property. TPATHCNE shows high Tgof 110℃ and Td of 385℃ and displays an aggregation-induced emission(AIE) property. A narrow optical bandgap of 1.65 eV is obtained. The non-doped film of TPATHCNE exhibits a high PLQY of 40.3% with an emission peak at 732 nm, which is among the best values of NIR emitters. When TPATHCNE is applied in organic light-emitting diode(OLED), the electroluminescent peak is located at 716 nm with a maximum external quantum efficiency of 0.83%. With the potential in cell imaging, the polystyrene maleic anhydride(PMSA) modified TPATHCNE nanoparticles(NPs) emit strong fluorescence when labeling HeLa cancer cells, suggesting that TPATHCNE can be used as a fluorescent carrier for specific staining or drug delivery for cellular imaging. TPATHCNE NPs fabricated by bovine serum protein(BSA) are cultivated with mononuclear yeast cells, and the intense intracellular red fluorescence indicates that it can be adopted as a specific stain for imaging.  相似文献   

17.
In the field of optical sensors, small molecules responsive to metal cations are of current interest. Probes displaying aggregation-induced emission (AIE) can solve the problems due to the aggregation-caused quenching (ACQ) molecules, scarcely emissive as aggregates in aqueous media and in tissues. The addition of a metal cation to an AIE ligand dissolved in solution can cause a “turn-on” of the fluorescence emission. Half-cruciform-shaped molecules can be a winning strategy to build specific AIE probes. Herein, we report the synthesis and characterization of a novel L-shaped fluorophore containing a benzofuran core condensed with 3-hydroxy-2-naphthaldehyde crossed with a nitrobenzene moiety. The novel AIE probe produces a fast colorimetric and fluorescence response toward zinc (II) in both in neutral and basic conditions. Acting as a tridentate ligand, it produces a complex with enhanced and red-shifted emission in the DR/NIR spectral range. The AIE nature of both compounds was examined on the basis of X-ray crystallography and DFT analysis.  相似文献   

18.
聚集诱导发光(AIE)分子是与传统的聚集态荧光淬灭染料分子具有截然相反的光物理性质的新型有机发光材料,可广泛应用于化学/生物传感、生物探针与成像、诊疗一体化和光电子器件等诸多领域中。本论文通过可逆加成-断裂链转移(RAFT)聚合方法,可控合成了侧链型四苯乙烯TPE聚丙烯酸酯AIE聚合物。通过实验条件的优化与探索,尤其采用半衰期较短、活性更高的偶氮二异庚腈(ABVN)取代常规的偶氮二异丁腈(AIBN)引发剂,将原来超过12 h的过夜反应前沿科研实验,改造为较短的3–5 h聚合反应时间内即可达到中等收率和较好的聚合物产品质量,使其成为一个适合本科教学环境的新创实验。本实验融合了无水无氧操作技术、柱层析分离纯化、RAFT可控聚合和GPC分子表征技术、FTIR、NMR、UV-Vis、荧光光谱等多种现代实验技术和表征方法,考查了所合成四苯乙烯TPE侧基的AIE聚合物的光物理性质,测定其溶液中的相对荧光量子产率达17%。  相似文献   

19.
An activatable nanoprobe for imaging breast cancer metastases through near infrared‐I (NIR‐I)/NIR‐II fluorescence imaging and multispectral optoacoustic tomography (MSOT) imaging was designed. With a dihydroxanthene moiety serving as the electron donor, quinolinium as the electron acceptor and nitrobenzyloxydiphenylamino as the recognition element, the probe can specifically respond to nitroreductase and transform into an activated D‐π‐A structure with a NIR emission band extending beyond 900 nm. The activated nanoprobe exhibits NIR emission enhanced by aggregation‐induced emission (AIE) and produces strong optoacoustic signal. The nanoprobe was used to detect and image metastases from the orthotopic breast tumors to lymph nodes and then to lung in two breast cancer mouse models. Moreover, the nanoprobe can monitor the treatment efficacy during chemotherapeutic course through fluorescence and MSOT imaging.  相似文献   

20.
Aggregation-induced emission (AIE) is a cutting-edge fluorescence technology, giving highly-efficient solid-state photoluminescence. Particularly, AIE luminogens (AIEgens) with emission in the range of second near-infrared window (NIR-II, 1000–1700 nm) have displayed salient advantages for biomedical imaging and therapy. However, the molecular design strategy and underlying mechanism for regulating the balance between fluorescence (radiative pathway) and photothermal effect (non-radiative pathway) in these narrow bandgap materials remain obscure. In this review, we outline the latest achievements in the molecular guidelines and photophysical process control for developing highly efficient NIR-II emitters or photothermal agents with aggregation-induced emission (AIE) attributes. We provide insights to optimize fluorescence efficiency by regulating multi-hierarchical structures from single molecules (flexibilization) to molecular aggregates (rigidification). We also discuss the crucial role of intramolecular motions in molecular aggregates for balancing the functions of fluorescence imaging and photothermal therapy. The superiority of the NIR-II region is demonstrated by fluorescence/photoacoustic imaging of blood vessels and the brain as well as photothermal ablation of the tumor. Finally, a summary of the challenges and perspectives of NIR-II AIEgens for in vivo theranostics is given.

Structural and process controls of NIR-II AIEgens realize manipulating of radiative (R) and nonradiative (NR) decay for precise theranostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号