首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parathyroid hormone (PTH) inhibits Na+-K+-ATPase activity by serine phosphorylation of the alpha1 subunit through protein kinase C (PKC)- and extracellular signal-regulated kinase (ERK)-dependent pathways. Based on previous studies we postulated that PTH regulates sodium pump activity through isoform-specific PKC-dependent activation of ERK. In the present work utilizing opossum kidney cells, a model of renal proximal tubule, PTH stimulated membrane translocation of PKCalpha by 102 +/- 16% and PKCbetaI by 41 +/- 7% but had no effect on PKCbetaII and PKCzeta. Both PKCalpha and PKCbetaI phosphorylated the Na+-K+-ATPase alpha1 subunit in vitro. PTH increased the activity of PKCalpha but not PKCbetaI. Coimmunoprecipitation assays demonstrated that treatment with PTH enhanced the association between Na+-K+-ATPase alpha1 subunit and PKCalpha, whereas the association between Na+-K+-ATPase alpha1 subunit and PKCbetaI remained unchanged. A PKCalpha inhibitory peptide blocked PTH-stimulated serine phosphorylation of the Na+-K+-ATPase alpha1 subunit and inhibition of Na+-K+-ATPase activity. Pharmacologic inhibition of MEK-1 blocked PTH-stimulated translocation of PKCalpha, whereas transfection of constitutively active MEK-1 cDNA induced translocation of PKCalpha and increased phosphorylation of the Na+-K+-ATPase alpha1 subunit. In contrast, PTH-stimulated ERK activation was not inhibited by pretreatment with the PKCalpha inhibitory peptide. Inhibition of PKCalpha expression by siRNA did not inhibit PTH-mediated ERK activation but significantly reduced PTH-mediated phosphorylation of the Na+-K+-ATPase alpha1 subunit. Pharmacologic inhibition of phosphoinositide 3-kinase blocked PTH-stimulated ERK activation, translocation of PKCalpha, and phosphorylation of the Na+-K+-ATPase alpha1 subunit. We conclude that PTH stimulates Na+-K+-ATPase phosphorylation and decreases the activity of Na+-K+-ATPase by ERK-dependent activation of PKCalpha.  相似文献   

2.
The treatment of frog erythrocytes incubated in standard nitrate medium with 100 nM phorbol ester (PMA) induced a sharp increase in the 22Na uptake by the cells and intracellular Na(+) concentration. The PMA-induced enhancement in 22Na uptake was stimulated by the addition of 0.1 mM ouabain to the incubation medium and completely blocked by 1 mM amiloride. The time course of 22Na uptake by frog red cells in the presence of PMA showed a lag phase ( approximately 5 min), after which was linear within 5-15 min. The calculated Na(+) influx in erythrocytes treated with PMA was 49.4+/-3.7 mmol l(-1) cells h(-1) as compared with 1.2+/-0.25 mmol l(-1) h(-1) for control cells. 5-(N-ethyl-N-isopropyl)-amiloride, selective blocker of NHE1, caused a dose-dependent inhibition of the PMA-induced Na(+) influx with IC(50) of 0.27 microM. The PMA-induced Na(+) influx was almost completely inhibited by 0.1 microM staurosporine, protein kinase C blocker. Pretreatment of frog red blood cells for 5, 10 or 15 min with 10 mM NaF, non-selective inhibitor of protein phosphatase, led to a progressive stimulation of the PMA effect on Na(+) influx. Both amiloride and NaF did not affect the basal Na(+) influx in frog erythrocytes. The data indicate that the Na(+)-H(+) exchanger in the frog erythrocytes is quiescent under basal conditions and can be markedly stimulated by PMA.  相似文献   

3.
4.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

5.
6.
We examined the role of protein kinase C (PKC) in the regulation of Na+,K+- ATPase activity in the renal cortex. Male Wistar rats were anaesthetized and the investigated reagents were infused into the abdominal aorta proximally to the renal arteries. A PKC-activating phorbol ester, phorbol 12,13-dibutyrate (PDBu), had a dose-dependent effect on cortical Na+,K+-ATPase activity. Low dose of PDBu (10(-11) mol/kg per min) increased cortical Na+,K+-ATPase activity by 34.2%, whereas high doses (10(-9) and 10(-8) mol/kg per min) reduced this activity by 22.7% and 35.0%, respectively. PDBu administration caused changes in Na+,K+-ATPase Vmax without affecting K(0.5) for Na+, K+ and ATP as well as Ki for ouabain. The effects of PDBu were abolished by PKC inhibitors, staurosporine, GF109203X, and G? 6976. The inhibitory effect of PDBu was reversed by pretreatment with inhibitors of cytochrome P450-dependent arachidonate metabolism, ethoxyresorufin and 17-octadecynoic acid, inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002, and by actin depolymerizing agents, cytochalasin D and latrunculin B. These results suggest that PKC may either stimulate or inhibit renal cortical Na+,K+-ATPase. The inhibitory effect is mediated by cytochrome P450-dependent arachidonate metabolites and PI3K, and is caused by redistribution of the sodium pump from the plasma membrane to the inactive intracellular pool.  相似文献   

7.
Most vital cellular functions aredependent on a fine-tuned regulation of intracellular ion homeostasis.Here we have demonstrated, using COS cells that were untransfected ortransfected with wild-type rat ouabain-resistantNa+-K+-ATPase, that partial inhibition ofNa+-K+-ATPase has a dramatic influence oncell attachment to fibronectin. Ouabain dose-dependently decreasedattachment in untransfected cells and in cells expressing wild-typeNa+-K+-ATPase, but not in cells expressingouabain-insensitive Na+-K+-ATPase, whereasinhibition of Na+-K+-ATPase by loweringextracellular K+ concentration decreased attachment in allthree cell types. Thirty percent inhibition ofNa+-K+-ATPase significantly attenuatedattachment. Na+-K+-ATPase inhibition caused asustained increase in the intracellular Ca2+ concentrationthat obscured Ca2+ transients observed in untreated cellsduring attachment. Inhibitors of Ca2+ transporterssignificantly decreased attachment, but inhibition ofNa+/H+ exchanger did not. Ouabain reduced focaladhesion kinase autophosphorylation but had no effect on cell surfaceintegrin expression. These results suggest that the level ofNa+-K+-ATPase activity strongly influences cellattachment, possibly by an effect on intracellular Ca2+.

  相似文献   

8.
9.
10.
11.
Slices of rat corpora lutea (CL) incubated with prostaglandin F2 alpha (PGF2 alpha) in Krebs-Hensenleit (K-H) Ringer solution showed a decrease in Na+-K+-ATPase activity after 60 min of incubation. However, PGF2 alpha in vitro did not alter Na+-K+-ATPase activity of isolated luteal membrane fractions. Following PGF2 alpha-induced in vivo luteal regression, reduction of Vmax and elevation of the activation energy above transition temperature of the lipid phase of the membrane occurred without changes in Km, optimum pH and transition temperature. These results suggest that reduction of Na+-K+-ATPase activity after PGF2 alpha treatment may be due to reduction in the number of enzyme molecules or to masking of the active site of the enzyme without any change in enzyme characteristics. In addition, a change in membrane-bound enzyme activity may be an early step in PGF2 alpha-induced luteolysis.  相似文献   

12.
Na + -K + discrimination by "pure" phospholipid membranes   总被引:4,自引:0,他引:4  
  相似文献   

13.
14.
15.
We investigated whether depressed muscle Na(+)-K(+)-ATPase activity with exercise reflected a loss of Na(+)-K(+)-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na(+)-K(+)-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at approximately 40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na(+)-K(+)-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na(+)-K(+)-ATPase content via [(3)H]ouabain binding sites, and Na(+)-K(+)-ATPase alpha(1)-, alpha(2)-, alpha(3)-, beta(1)-, beta(2)- and beta(3)-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [(3)H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated alpha(1)-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Delta3-O-MFPase(rest-fatigue)) (r = -0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) alpha(1)-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Delta3-O-MFPase(rest-fatigue) (r = -0.56, P = 0.08). Exercise elevated alpha(2)-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Delta3-O-MFPase(rest-fatigue) (r = -0.60, P = 0.05). The average postexercise alpha(2)-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Delta3-O-MFPase(rest-fatigue) (r = -0.68, P < 0.05). Nonsignificant correlations were found between %Delta3-O-MFPase(rest-fatigue) and other isoforms. Thus acute exercise transiently decreased Na(+)-K(+)-ATPase activity, which was correlated with increased Na(+)-K(+)-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na(+)-K(+)-ATPase activity with exercise.  相似文献   

16.
Na+-K+- ATPase -subunitsin basolateral membrane vesicles (BLMVs) purified from rat parotidglands were 32P-labeled within 5 s by incubation with[-32P]ATP at 37°C in the presence of cAMP, but nolabeling occurred without cAMP. Phosphorylation ofNa+-K+-ATPase was associated with a decrease inits activity. This -subunit phosphorylation disappeared when BLMVswere briefly incubated with cAMP and subsequent washing before theincubation with [-32P]ATP, indicating that catalyticsubunit of protein kinase A (PKA) associated to BLMVs via binding withits RII regulatory subunit anchored on the membrane. In theabsence of cAMP, a PKA catalytic subunit readily reassociated with themembrane-bound RII subunit. HT-31 peptide inhibited theNa+-K+-ATPase phosphorylation by membrane-boundendogenous PKA, indicating an involvement of A-kinase anchoring protein(AKAP). AKAP-150 protein in BLMVs was shown by immunoblotting and anRII overlay assay and was coimmunoprecipitated by anti-RII antibody.These results show that Na+-K+-ATPase of ratparotid gland acinar cells is regulated in vivo by membrane-anchoredPKA via AKAP rather than by free cytosolic PKA.

  相似文献   

17.
18.
Hyperinsulinemia increases lactate release by various organs and tissues. Whereas it has been shown that aerobic glycolysis is linked to Na+-K+-ATPase activity, we hypothesized that stimulation by insulin of skeletal muscle Na+-K+-ATPase is responsible for increased muscle lactate production. To test this hypothesis, we assessed muscle lactate release in healthy volunteers from the [13C]lactate concentration in the effluent dialysates of microdialysis probes inserted into the tibialis anterior muscles on both sides and infused with solutions containing 5 mmol/l [U-13C]glucose. On one side, the microdialysis probe was intermittently infused with the same solution additioned with 2.10(-5) M ouabain. In the basal state, [13C]lactate concentration in the dialysate was not affected by ouabain. During a euglycemic-hyperinsulinemic clamp, [13C]lactate concentration increased by 135% in the dialysate without ouabain, and this stimulation was nearly entirely reversed by ouabain (56% inhibition compared with values in the dialysate collected from the contralateral probe). These data indicate that insulin stimulates muscle lactate release by activating Na+-K+-ATPase in healthy humans.  相似文献   

19.
Oxidative stress during pathological conditionssuch as ischemia-reperfusion is known to promote the formationof hypochlorous acid (HOCl) in the heart and to result in depression ofcardiac sarcolemmal (SL)Na+-K+-ATPaseactivity. In this study, we examined the direct effects of HOCl on SLNa+-K+-ATPasefrom porcine heart. HOCl decreased SLNa+-K+-ATPaseactivity in a concentration- and time-dependent manner. Characterization ofNa+-K+-ATPaseactivity in the presence of different concentrations of MgATP revealeda decrease in the maximal velocity(Vmax) value, without a change in affinity for MgATP on treatment of SL membranes with 0.1 mM HOCl. TheVmax value ofNa+-K+-ATPase,when determined in the presence of different concentrations ofNa+, was also decreased, butaffinity for Na+ was increasedwhen treated with HOCl. Formation of acylphosphate by SLNa+-K+-ATPasewas not affected by HOCl. Scatchard plot analysis of[3H]ouabain bindingdata indicated no significant change in the affinity or maximum bindingcapacity value for ouabain binding following treatment of SL membraneswith HOCl. Western blot analysis ofNa+-K+-ATPasesubunits in HOCl-treated SL membranes showed a decrease (34 ± 9%of control) in the 1-subunitwithout any change in the 1- or2-subunits. These data suggestthat the HOCl-induced decrease in SLNa+-K+-ATPaseactivity may be due to a depression in the1-subunit of the enzyme.

  相似文献   

20.
1. The activation of K+-dependent p-nitrophenylphosphatase (EC 3.6.1.7) by both Na+ and ATP in rat intestinal basolateral plasma membrane is inhibited by prostaglandin A2. 2. The drug's inhibition of the activation of the enzyme by both Na+ and ATP is due to a decrease in the affinity of the enzyme for Na+ and in the Vmax of the enzyme. 3. The Ki values for this drug for Na+ and ATP in the activation of the enzyme were 45 and 70 microM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号