首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a parametric study of a catalytic flow reversal reactor used for the combustion of lean methane in air mixtures. The effects of cycle time, velocity, reactor diameter, insulation thickness, thermal mass and thermal conductivity of the inert sections are studied using a computer model of the system. The effects on the transient behaviour of the reactor are shown. Emphasis is placed on the effects of geometry from a scale-up perspective. The most stable system is obtained when the thermal mass of the inert sections is highest, while thermal conductivity has only a minor effect on reactor temperature. For a given operation, the stationary state depends on the combination of velocity and switch time. Provided that complete conversion is achieved, highest reactor temperature is achieved with the highest switch time. The role of the insulation is not only to prevent heat loss to the environment, but also to provide additional thermal mass. During operation heat is transfer to and from the insulation. The insulation effect leads to higher reactor temperature up to a maximum thickness. The insulation effect diminishes as the reactor diameter increases, and results in higher temperatures at the centreline.  相似文献   

2.
Flow reversal reactor for the catalytic combustion of lean methane mixtures   总被引:7,自引:0,他引:7  
This paper describes an experimental investigation of a pilot scale reverse flow reactor for the catalytic destruction of lean mixtures of methane in air. It was found that using reverse flow it was possible maintain elevated reactor temperatures which were capable of achieving high methane conversion of methane in air streams at methane concentrations as low as 0.19% by volume. The space velocity, cycle time and feed concentration are all important parameters that govern the operation of the reactor. Control of these parameters is important to prevent the trapping of the thermal energy within the catalyst bed, which can limit the amount of energy that can be usefully extracted from the reactor.  相似文献   

3.
高娟  贾志刚  张照 《工业催化》2014,22(9):719-724
在建立低浓度挥发性有机化合物VOCs催化燃烧流向变换反应器一维非均相模型的基础上,编写Matlab程序对模型进行求解。分析在不同的表观气速下,反应器蓄热段长度对反应器性能的影响,着重研究大气速条件下反应器的最佳床层结构比例。计算结果表明,不同的蓄热段长度对反应器性能有很大影响。对于直径0.2 m的反应器,小气速条件下,反应器内最高温度随着蓄热段长度的增大而降低,大气速条件下则相反。在表观气速为0.15 m·s-1和床层结构比例为1.2~2.0条件下,反应器能达到最佳操作状态。  相似文献   

4.
A novel two-stage catalyst bed reactor was constructed comprising of the 5%Na2WO4-2%Mn/SiO2 particle catalyst and the 5%Na3PO4-2%Mn/SiO2/cordierite monolithic catalyst. The reaction performance of the oxidative coupling of methane (OCM) in the two-stage bed reactor system was evaluated. The effects of the bed height and operation mode, as well as the reaction parameters such as reaction temperature, CH4/O2 ratio and flowrate of feed gas on the catalytic performance were investigated. The results indicated that the two-stage bed reactor system exhibited a good performance for the OCM reaction when the feed gases were firstly passed through the particle catalyst bed and then to the monolithic catalyst bed. The CH4 conversion of 32.6% and C2 selectivity of 67.5% could be obtained with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm in the two-stage bed reactor. Both of the CH4 conversion and C2 selectivity have been increased by 4.8% and 2.5%, respectively, as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a single-bed reactor and by 7.7% and 16.1%, respectively, as compared with the 5%Na3PO4-2%Mn/SiO2/cordierite monolithic catalyst in a single-bed reactor. The catalytic performance of the OCM in the two-stage bed reactor system has been remarkably improved. The TPR results indicate the high temperature reduction oxygen species in the monolithic catalyst might be favorable to the formation of C2 products.  相似文献   

5.
The control system of a catalytic flow reversal reactor (CFRR) for the mitigation of ventilation air methane was investigated. A one-dimensional heterogeneous model with a logic-based controller was applied to simulate the CFRR. The simulation results indicated that the controller developed in this work performs well under normal conditions. Air dilution and auxiliary methane injection are effective to avoid the catalyst overheating and reaction extinction caused by prolonged rich and lean feed conditions, respectively. In contrast, the reactor is prone to lose control by adjusting the switching time solely. Air dilution exhibits the effects of two contradictory aspects on the operation of CFRR, i.e., cooling the bed and accumulating heat, though the former is in general more prominent. Lowering the reference temperature for flow reversal can decrease the bed temperature and benefit stable operation under rich methane feed condition.  相似文献   

6.
Perovskite type La1 − xSrxMnO3 (x = 0–0.5) oxides were prepared by the amorphous citrate process, characterised by X-ray diffraction, oxygen desorption, temperature-programmed reduction, infrared and X-ray photoelectron spectroscopic techniques, and tested for methane combustion within the 473–1073 K temperature range. Since catalyst activity was found to depend strongly on BET areas and to a lesser extent, on the degree of substitution (x), intrinsic activities were computed for La1 − xSrxMnO3 catalyst series. Among the compositions investigated, the degree of substitution x = 0.2 showed the highest intrinsic activity within the temperatures explored. Characterisation techniques made possible to correlate catalytic performance with the structural characteristics of the oxides. The stability of Mn4+ is probably the most important parameter, but excess of oxygen and atomic surface composition should also be taken into account.  相似文献   

7.
Monolith reactors are widely considered as an alternative to the conventional trickle bed reactor. For the commercial deployment of monolith reactors, comparative performance studies are required. Reliable comparative and performance studies require a detailed understanding of the effect of phase distribution/maldistribution on the performance studies. In this work, performance and comparative studies were carried out in a relatively large column that was 4.8 cm in diameter. Experiments were performed in the same conditions that were used in studies for which phase distribution data were available. Since the properties of the catalyst used were different in both the reactors, the apparent kinetics were studied to facilitate the comparison. The hydrogenation of alpha-methyl styrene (AMS) was used as a test reaction. From the performance studies, it was found that the effect of maldistribution on the performance was stronger than the catalyst availability. From the comparative studies, it was found that the monolith reactor with maldistributed flow conditions provides higher productivity than the trickle bed reactor.  相似文献   

8.
The applicability of a catalyst based on copper dispersed on γ-Al2O3 spheres (1 mm diameter) for fluidized bed catalytic combustion of methane has been assessed. Catalyst properties have been determined by physico-chemical characterization techniques and fixed bed activity tests revealing the presence of a surface CuAl2O4 spinel phase, still active and stable in methane combustion after repeated thermal ageing treatments at 800 °C. Methane catalytic combustion experiments have been performed in a 100 mm premixed fluidized bed reactor under lean conditions (0.15–3% inlet methane concentration), showing that complete CH4 conversion can be attained below 700 °C in a fluidized bed of 1 mm solids with a gas superficial velocity about twice the incipient fluidization velocity.  相似文献   

9.
A biodiesel process in a packed bed reactor was used as a model system to show the strong dependence of the reactor behavior on the developing of chemical environment within the reactor. Ethanolysis runs of babassu and macaw palm oils were carried out in a solvent-free system using Burkholderia cepacia lipase immobilized on silica–PVA matrix. The best performance was found for the reactor running on macaw palm oil, which resulted in a stable operating system and an average yield of 87.6 ± 2.5%. This strategy also gave high biocatalyst operational stability, revealing a half-life of 478 h.  相似文献   

10.
Electrical resistance tomography is a relatively simple and inexpensive technique for imaging electrically conducting systems. It has been applied to visualise the flow pattern and distribution inside a radial flow packed bed of novel design for improving reactor performance with lower pressure drop. The density of information yielded by electrical tomography is suitable for validation of Computational fluid dynamics. Sets of tomographic images representing slices through a packed bed have been obtained for a 8-plane × 16-electrode sensor configuration which produces of the order 103 conductivity measurements in three-dimensions. Pulse injections of high conductivity tracer, both uniformly in the feed and localised, can be imaged as multiple tomographic images or 3D solid-body images, revealing the internal flow pattern. Differentiation of the motion of the tracer peak conductivity within pixels in the sensing planes and between the planes allows the local flow velocities and directions to be determined. This quantifies the flow pattern for uniformity and radial distributive properties.  相似文献   

11.
Hydrothermal synthesis by using urea hydrolysis at 1.0-3.0 MPa and 120-130 ‡C was employed to prepare Mn-substituted hexaaluminate catalysts for methane combustion. The results from DTA-MS demonstrated that CO3- and Off anions co-exist in the hydrothermal reaction. XRD reveals that the components of carbonates and hydroxides in the hydrothermal reaction are more favorable than those in the (NH4)2CO3 co-precipitation for the formation of the Mn-substituted hexaaluminate phase. After calcination at 1,200 ‡C for 2 h, LaMnAl11O19 is the major phase of the catalyst prepared by the hydrothermal synthesis method while LaAlO3 is the major one of the catalysts prepared by NH4OH and (NH4)2CO3 co-precipitation. The catalyst prepared by hydrothermal synthesis has higher activity than that prepared by NH4OH and (NH4)2CO3 co-precipitation. The major reason is that more Mn2+ ions have incorporated into the hexaaluminate lattice. The effect of drying methods on the formation of hexaaluminate phase was also discussed.  相似文献   

12.
Ceramic honeycomb monoliths with a noble metal-alumina based washcoat were used as burners for the combustion of very lean methane-air mixtures below the conventional lower flammability limit without the emission of CO, NOx, or unburned fuel gas. Measurements and modelling in the steady state proved that the near zero emissions could have been equally due to gas phase combustion than to catalytic combustion for the long monoliths. However, only catalytic oxidation reactions could account for the complete and clean combustion observed for the shortest burners, indicating that even in the longest monoliths, the combustion had been catalytic. Thus the onset of gas phase combustion was inhibited by catalytic combustion. This phenomenon was investigated using numerical modelling and experimental studies on a catalytic stagnation point flow reactor, with a polycrystalline Pt foil as the catalyst. These studies showed the extent of the phenomenon of inhibition of gas phase ignition and how catalytic combustion is an extremely stable and clean process.  相似文献   

13.
In a fluidized-bed membrane reactor the selectivity of separation can be controlled by influencing the hydrodynamics of the fluidized bed. In this reactor type, with the mass transport limitation between bubbles and the emulsion phase, even with the non-selective membranes, high selectivity of separation can be achieved. This opens the possibility for applications of membrane reactors for reaction systems for which selective membranes do not exist, e.g. when Knudsen-type membranes or form-selective separation can not be applied. This paper is aimed at explaining the interaction between the selectivity of separation and the hydrodynamics of the fluidized bed by means of simulations that were performed for a fluidized-bed membrane reactor for catalytic partial oxidation of methane.  相似文献   

14.
蒋赛  郭紫琪  季生福 《工业催化》2014,22(11):816-824
甲烷催化燃烧是一种清洁高效的甲烷燃烧技术,在节能减排中具有重要的应用价值。从催化剂、反应工艺和过程强化等方面对近年来甲烷催化燃烧技术进行综述,重点介绍颗粒催化剂固定床反应工艺、整体式催化剂反应工艺、流化床反应工艺和吸放热耦合反应工艺研究进展。用于固定床反应器的颗粒催化剂主要为负载型贵金属催化剂和非贵金属氧化物催化剂。贵金属催化剂活性好,起燃温度低,适合低浓度甲烷的催化燃烧。非贵金属氧化物催化剂耐高温性好,适合较高浓度甲烷燃烧体系。整体式催化剂的甲烷催化燃烧反应工艺中,最常用的是蜂窝陶瓷和金属合金等整体式催化剂的多段式催化燃烧反应器的设计。设计直接采用多段式整体催化剂,催化剂的位置不同,发挥的催化作用也不同。流化床催化燃烧装置具有燃烧过程接触面积广、热容量大和换热效率高等特点,可有效避免传统的固定床催化燃烧反应工艺存在的问题,非常适合应用于低浓度甲烷的催化燃烧过程。利用甲烷催化燃烧强放热的特点,将催化燃烧产生的热量进行时间或空间的耦合,可以开发出吸-放热耦合反应工艺。其中,固定床催化反应器中的流向变换强制周期操作作为一种高效的过程强化技术,在节约反应器成本的同时,可以提高反应热量的利用率。  相似文献   

15.
In this experimental research, the performance of the oxidative coupling of methane (OCM) reactions in a porous packed bed membrane reactor was investigated. A commercially available porous alpha-alumina membrane was modified to obtain the characteristics needed for a stable and catalytically inert OCM membrane reactor. The silica-sol impregnation–calcination method and a new silicon oxycarbide (SiOC) coating-calcination approach were applied to modify the membrane. The characteristics of the resulted membrane and its typical performance as OCM membrane reactor are reported.  相似文献   

16.
Literature correlations for the apparent wall heat transfer coefficient (hw) in fixed bed catalytic reactors are compared. At low to moderate values of the Reynolds number (Re), different correlations can produce estimates of the dimensionless wall Nusselt number (Nuw = hwdp/kf) that differ by an order of magnitude or more. Some correlations give Nuw as a function of Re only, others allow for the effects of tube-to-particle diameter ratio and particle and fluid thermal conductivities. The value of Nuw that is used in a simulation of a fixed bed catalytic reactor can have a strong effect on the predicted behavior. Two examples of fixed bed reactors are simulated and show that the more general correlations for Nuw are to be preferred.  相似文献   

17.
Pt–W and Pt–Mo based catalysts were evaluated for methane combustion using a sandwich-type microreactor. Alumina washcoated microchannels were impregnated with platinum in combination with and promoted with tungsten and molybdenum and compared with commercially available Pt/Al2O3 catalysts. Catalysts were tested in the range of 300–700 °C with flow rates adjusted to GHSV of 74,000 h−1 and WHSV of 316 L h−1 g−1. Catalysts containing tungsten were found to be the most active and the most stable possibly due to a metal interaction effect. A Pt–W/γ-Al2O3 containing 4.6 wt% Pt and 9 wt% W displayed the highest activity with full conversion at 600 °C and a selectivity to CO2 of 99%.  相似文献   

18.
A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction, removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production. For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used. Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogena-tion method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and significant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.  相似文献   

19.
A full parametric study of the open-loop behavior of a packed bed reactor-recuperator system operating under periodic flow reversal produced a series of parametric maps which slow regions of operating conditions for which the system exhibits runaway, stable operation or extinction of the reaction. The reaction is CO oxidation over a Pt/alumina catalyst. A set of optimal operating conditions in terms of cycle time and heat transfer coefficient can be directly extracted from the parametric maps. A preliminary study on the control of periodic flow reversal tested and compared two strategies. 1) feedback PID control of the exit CO concentration and 2) model based feedforward control.  相似文献   

20.
Methane decomposition over a Ni/Cu/Al2O3 catalyst is studied in a two-stage fluidized bed reactor. Low temperature is adopted in the lower stage and high temperature in the upper stage. This allows the fluidized catalysts to decompose methane with high activity in the high temperature condition; then the carbon produced will diffuse effectively to form carbon nanotubes (CNTs) in both low and high temperature regions. Thus the catalytic cycle of carbon production and carbon diffusion in micro scale can be tailored by a macroscopic method, which permits the catalyst to have high activity and high thermal stability even at 1123 K for hydrogen production for long times. Such controlled temperature condition also provides an increased thermal driving force for the nucleation of CNTs and hence favors the graphitization of CNTs, characterized by high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and XRD. Multistage operation with different temperatures in a fluidized bed reactor is an effective way to meet the both requirements of hydrogen production and preparation of CNTs with relatively perfect microstructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号