首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SEM and EDS studies were carried out to characterise filiform attack on a cerated AA2024-T351 aluminium alloy with a polyurethane topcoat. The filiforms developed on AA2024-T351 were sectioned, stripped of corrosion product and etched to reveal the grain structure. Examination of sections through the filaments and the filaments themselves, revealed severe local attack in the form of pitting resulting in grain etch out, grain boundary attack and subsurface etch out. Chloride ions were detected deep within pits and the subsurface etch out. The observations were similar to those found with filiform corrosion on chromated and coated surfaces. The observations led to development of a filiform corrosion model naming the volume expansion of the corrosion product as the principal cause for delamination.  相似文献   

2.
The surface corrosion behavior of an AA2024-T3 aluminium alloy sheet after friction stir welding was investigated by using an “in-situ observation” method. SEM observations showed that the density and degree of the pitting corrosion in the shoulder active zone were slightly larger compared to the other regions on the top surface. The origins of the pitting corrosion were in the regions between the S phase particles and the adjacent aluminium base. The effect of Al-Cu-Fe-Mn-(Si) intermetallic compounds on the pitting corrosion was attributed to their high self-corrosion potential which induced the anodic dissolution of the surrounding aluminium matrix.  相似文献   

3.
Polished specimens of AA2024-T3 alloy were immersed for up to 120 min in 0.1 M NaCl. The development of corrosion was monitored using scanning electron microscopy with energy dispersive X-ray spectroscopy (EDXS) and particle induced X-ray emission spectroscopy (PIXE). Both techniques revealed the intermetallic (IM) particle distributions and attack sites as distinguished by detection of chloride species. The earliest stages of attack involved localized attack around isolated IM particles as reported in Part I. Additionally attack occurred on a larger scale developing rapidly with rings of corrosion product surrounding clusters of IM particles. There were significantly higher numbers of IM particles within the corrosion rings, indicating that local clustering played an important role in co-operative corrosion.  相似文献   

4.
The galvanic corrosion temporal increase observed on examination of the weld fusion zone (WFZ) of AA6061 laser weldments in 3.5 wt.% NaCl solution cannot be attributed to electron tunnelling as the surface oxide layer is too thick, or the presence of Cl within the surface layer as this element was not found to be present. Aluminium alloy and WFZ galvanic and surface analyses indicate that the cathodic WFZ corrosion characteristics are due to increases in silicate concentrations in the surface oxide layer, leading to increased ionic and/or p-type semi-conductor conductivity, intermetallic concentrations and surface area.  相似文献   

5.
Cerium molybdate containers loaded with 2-mercaptobenzothiazole were incorporated into epoxy coatings onto aluminium alloys 2024-T3 and investigated with respect to the corrosion protection of the metallic surfaces. The coatings were deposited via the dip-coating process. The morphology of the coatings was examined by Scanning Electron Microscopy. Their composition and structure were investigated by Fourier Transform Infrared Spectroscopy and Energy Dispersive X-ray Analysis. The corrosion resistance of these coatings was investigated by using electrochemical impedance spectroscopy and open circuit potential. After exposure to 0.05 M NaCl solution for 28 days, the coatings with the loaded containers exhibit improved corrosion performance.  相似文献   

6.
Surface modification by excimer laser surface melting (LSM) has been performed with the aim to improve the corrosion resistance of the AA2050-T8 alloy. LSM produced melted surfaces, largely free of precipitates, with both microstructure and corrosion behaviour depending upon the number of laser pulses employed. Increased number of laser pulses resulted in thicker melted layers, but also in greater trapped porosity and formation of micro-cracks at the overlapping area. Nevertheless, the LSM-treated specimens exhibited enhanced corrosion resistance compared to the untreated alloy, which was associated with the formation of a relatively uniform melted layer and a diminished presence of precipitates.  相似文献   

7.
This work aims at investigating the corrosion protection effectiveness of multifunctional epoxy coatings modified with pigments such as ceramic nanocontainers loaded with corrosion inhibitor, chloride and water traps, applied on AA2024-T3. Characterizations on the morphology, composition and structure of the coatings were conducted. The corrosion resistance was studied by electrochemical impedance spectroscopy, localized electrochemical impedance spectroscopy and scanning vibrating electrode technique. The mechanical behaviour of the coatings was examined through nanoindentation and nanoscratching tests. Electrochemical and nanomechanical testing results, evidenced the improvement of the corrosion protective properties and mechanical behaviour of the coatings in the presence of the various pigments.  相似文献   

8.
Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles   总被引:3,自引:0,他引:3  
Polished specimens of AA2024-T3 were immersed for various times up to 120 min in 0.1 M NaCl. The development of corrosion around isolated intermetallic particles was monitored using scanning electron microscopy with energy dispersive X-ray spectroscopy (EDXS). The earliest stages of attack started with localised corrosion of the S-phase particles resulting in dealloying which was followed by trenching around these particles. Subsequently, trenching was observed around cathodic particles where trenching started with AlCuFeMn particles with Cu/Fe ratios typically around 2.5 and then progressed to AlCuFeMnSi particles. This latter category of particles had a much lower Cu/Fe ratio, typically 0.5.  相似文献   

9.
Prior corrosion and fatigue of 2024-T3 aluminum alloy   总被引:2,自引:0,他引:2  
Pit-to-crack transition experiments were conducted on two thicknesses of 2024-T3 aluminum alloy. Specimens were corroded using a 15:1 ratio of 3.5% sodium chloride solution and hydrogen peroxide prior to fatigue loading. Cracks originating from corrosion pits were visually investigated using various microscopy techniques in order to gain insight into the pit-to-crack transition process.All pre-corroded specimens in this study fractured from cracks associated with pitting. Pit-to-crack transition was successfully observed using digital video techniques. The more aggressively corroded 2024-T3-4.064 mm specimens experienced more of an overall fatigue life reduction than 2024-T3-1.600 mm specimens. Results indicated that quantities such as pit surface area and surrounding pit proximity are as important as pit depth in determining when and where a crack will form.  相似文献   

10.
A high-throughput test has been developed for screening aqueous corrosion inhibitors on aluminium AA2024-T3. The method adapts basic microfluidic technology to create multiple channels in polydimethylsiloxane, which allow solutions to flow over the surface of the alloy, causing severe corrosion within hours if no inhibitor is present. In three-channel experiments under various channel conditions, corrosion rates were accelerated up to 15 times when compared to standard immersion tests. In addition, 10-channel experiments were conducted to simultaneously test 10 different inhibitors, and the results were compared visually and to actual corrosion results obtained quantitatively via solution analyses.  相似文献   

11.
The effect of welding parameters (rotation speed and travel speed) on the corrosion behaviour of friction stir welds in the high strength aluminium alloy AA2024-T351 was investigated. It was found that rotation speed plays a major role in controlling the location of corrosion attack. Localised intergranular attack was observed in the nugget region for low rotation speed welds, whereas for higher rotation speed welds, attack occurred predominantly in the heat-affected zone. The increase in anodic reactivity in the weld zone was due to the sensitisation of the grain boundaries leading to intergranular attack. Enhancement of cathodic reactivity was also found in the nugget as a result of the precipitation of S-phase. The results were compared with samples of AA2024-T351 that had been heat treated to simulate the thermal cycle associated with welding, and with samples that had been exposed to high temperatures for extended periods to cause significant over-ageing.  相似文献   

12.
The purpose of this work is to study the effect of heat treatment and chemical processing on the electrochemical behaviour of aluminium alloy AA3102. Aluminium alloy 3102 was electrochemically activated in chloride solution as a result of heat treatment for periods exceeding 10 min at temperatures higher than 400 °C. The electrochemical activation was determined by the presence of deep negative potential transients when exposed to an acidified chloride solution. Furthermore, the anodic current densities became large at a given potential relative to the as-extruded surface as a result of high temperature heat treatment. This activation phenomenon was attributed to enrichment of the surface by lead, which was present in the material as a trace element. Enrichment of lead at the metal-oxide interface was ascertained by GD-OES depth profiling. Chemical and structural changes occurring in the oxide as a result of heat treatment did not have a direct role in the activation process. It was also shown that enrichment of the surface by lead had a sacrificial effect in protecting the surface against pitting corrosion.  相似文献   

13.
The role of pH on the nature and rate of the degradation of epoxy coatings on AA2024-T3 panels and subsequent corrosion of the substrate during immersion in NaCl solutions was investigated. In acidic solutions both blister formation and growth are rapid. Blisters become very large (≈1 cm) and new blisters appear to form for a certain time after exposure. Often very small (∼0.1 mm) clear blisters surround these large blisters. Enhanced blister formation is due to irreversibly increased permeability of the coating for chloride ions and protons, the formation of more defect sites within the coating, and the weakening/dissolution of the oxide layer in low pH environments. In neutral pH solutions, coatings fail by forming one, or at most two, active blisters (red in color) within a few days of immersion with the time-to-failure dependent upon coating quality and thickness. Blister growth is a very slow process, and blister diameters rarely exceed a few millimeters even after several weeks. The accumulation of corrosion product within the blister slows down the corrosion rate and blister growth. The chloride concentration in the occluded solutions within the blister is significantly increased over the bulk concentration, and the pH is often in the acidic range. From electrochemical measurements it can be concluded that the anodic and cathodic reactions are confined to the blister and its immediate surroundings, rather than involving more of the surface over which the coating is intact. Based on corrosion morphology it is concluded that replated copper contributes to the overall cathodic reaction.  相似文献   

14.
The corrosion behaviour of AA2050-T8 was studied after polishing and after laser shock processing (LSP) treatment using the electrochemical microcell technique and the SVET. After polishing, pitting at constituent particles and intergranular corrosion were observed. By contrast, no intergranular corrosion developed after LSP. Microcell measurements revealed that LSP increases the pitting potential. SVET measurements revealed that local anodic currents are systematically lower on LSP-treated surfaces than on polished ones. The current density on the LSP-treated surface remains constant around 50 μA cm−2 up to 123 min after immersion, while on the polished surface it reaches 200 μA cm−2.  相似文献   

15.
In the last few years great efforts have been made in order to find and to develop environmentally friendly substitutes for Cr6+ pre-treatments applied on aluminium alloys used in the aircraft industry. Among the potential substitutes, silane layers have attracted considerable interest from researchers and from the industry. The present work investigates the anti-corrosion behaviour of (bis-1, 2-(triethoxysilyl) ethane (BTSE)) silane layers modified with Ce ions and/or silica nanoparticles applied on Al alloy 2024-T3 substrates. The corrosion behaviour was investigated in 0.1 M NaCl solution via d.c. polarization and electrochemical impedance spectroscopy (EIS). Contact angle measurements and XPS were used to assess information on the chemistry of the silane pre-treated surfaces. The results have shown that the introduction of additives improves the corrosion protection properties of the silane layer.  相似文献   

16.
The corrosive wear of D16T aluminium alloy in artificial acid rain was studied. A special tribometer with the linear reciprocating ball-on-flat geometry was used. The setup allows to measure simultaneously an open circuit potential, to carry out potentiostatic and potentiodynamic polarization studies of the alloy corrosion and to record the friction coefficient. It was established that the addition of strontium chromate inhibitor to the working environment decreases an electrochemical corrosion of the aluminium alloy under wear conditions, but in general accelerates its destruction due to insufficient wear resistance of a formed surface film.  相似文献   

17.
The mechanisms of corrosion inhibition of AA2024-T3 by vanadates were studied using chronoamperometry, polarization curves and adsorption isotherms. The electrochemical behaviour of clear solutions containing metavanadates and orange solutions containing decavanadates was clearly distinctive. Metavanadates reduced the kinetics of oxygen reduction to an extent similar to chromates. Corrosion inhibition of AA2024-T3 by metavanadates was very rapid and it might occur by the formation of an adsorbed layer. Reduction of clear metavanadate solution was very slow. Approximately 35 min were required to develop a monolayer of a reduced vanadate species. The adsorption of the inhibitor likely blocked reactive sites on intermetallic particles, discouraging the oxygen reduction reaction (ORR). Adsorption of the inhibitor on the Al matrix could also displace Cl ions, increasing the stability of the passive film and reducing the breakdown of S-phase particles. In contrast, decavanadates were shown to be poor inhibitors of the ORR. A sharp current spike was observed after injection of decavanadates for both Cu and AA2024-T3 at various applied cathodic potentials. Integration of the current peaks suggested the formation of several monolayers of a reduced vanadate species. The formation of several monolayers was in line with the poor performance of decavanadates as inhibitors of AA2024-T3 corrosion.  相似文献   

18.
The oxide layer formed over AA 2024 using 10 wt.% H2SO4 (plain oxide, PO) was modified by Mn/Mo oxyanions (permanganate/molybdate modified oxide, PMMO) as an alternative to Cr(VI) ions to enhance the corrosion resistance. The corrosion current density values obtained for PMMO was found to be 2.8% and 1.4% of hydrothermal treated oxide (HTO) and PO respectively after 168 h immersion in 3.5% NaCl solution. The electrochemical studies showed the higher barrier layer resistance for PMMO. The improved corrosion behavior of PMMO was observed based on the damage function calculated. Similar observations were confirmed by continuous salt spray test.  相似文献   

19.
This paper evaluates the inhibiting action of some anionic surfactants towards AA2198 corrosion in NaCl solutions; the effect of surfactant concentration in relation to chloride amount was determined.On separate electrodes, polarization curves were recorded after 1, 24 and 168 h immersion in the aggressive media, while EIS technique continuously monitored the alloy corrosion process.In general, these substances stifled both the cathodic and anodic processes and noticeably shifted the pitting potential (breakdown potential, EBR) in the positive direction. The most efficient compounds were N-lauroylsarcosine sodium salt and sodium dodecyl-benzenesulfonate, able to withstand the effects of 0.1 M Cl.  相似文献   

20.
Swapna Dey 《Corrosion Science》2008,50(10):2895-2901
A comparative study of pitting severity in T6 and T73 tempers of AA7075 in 0.1 M NaCl is reported here. Pitting was more severe for T6 tempers compared to T73 tempers. This could be attributed to higher pit nucleation sites in the former. The statistical distributions for pit areas indicated nucleation saturation in T73. The extreme value distributions showed differences for the two tempers. These differences in pit distribution are explained on the basis of the role of constituent as well as strengthening particles as well as the role of grain boundary η precipitates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号