首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The optic tectum is a major subdivision of the visual system in reptiles. Previous studies have characterized the laminar pattern, the neuronal populations, and the afferent and efferent connections of the optic tectum in a variety of reptiles. However, little is known about the interactions that occur between neurons within the tectum. This study describes two kinds of interactions that occur between one major class of neurons, the radial cells, in the optic tectum of Pseudemys using Nissl, Golgi and electron microscopic preparations. Radial cells have somata which bear long, radially oriented apical dendrites from their upper poles and short, basal dendrites from their lower poles. They are divided into two populations on the basis of the distribution of their somata in the tectum. Deep radial cells have somata densely packed in the stratum griseum periventriculare. Their plasma membranes form casual appositions. Middle radial cells have somata scattered throughout the stratum griseum centrale and stratum fibrosum et griseum superficiale and do not contact each other. The apical dendrites of both populations of radial cells participate in vertically oriented, dendritic bundles. The plasma membranes of the dendrites in these bundles form casual appositions in the deeper tectal layers and chemical, dendrodenritic synapses within the stratum fibrosum et griseum superficiale. The synapses have clear, round synaptic vesicles and slightly asymmetric membrane densities. Thus, radial cells interact via both casual appositions and chemical synapses. These interactions suggest that radial cells may form a basic framework in the tectum. Because both populations of radial cells extend into the stratum fibrosum et griseum superficiale and stratum opticum, they may receive input from some of the same tectal afferent systems. Because the deep radial cells alone have somata and dendrites in the deep tectal layers, they may receive additional inputs that the middle radial cells do not. Neurons in the two populations interact via chemical dendrodentritic synapses, thereby forming vertically oriented modules in the tectum.  相似文献   

2.
Summary The optic tectum of Calamoichthys calabaricus (Polypteriformes) shows a relatively complex vertical stratification, with six main layers and a varied neuronal typology. In particular, pyriform neurons in the well developed stratum griseum periventriculare and some multipolar neurons in the stratum griseum profundum represent the efferent elements of the tectum, while the optic and lemniscal inputs to the tectum converge in the plexiform sublayers of the stratum fibrosum et griseum superficiale. In the circuitry of the tectum some modulation is achieved by some of the polymorphic cells of the stratum griseum internum and by the horizontal cells of the outer layers. Notwithstanding some differences with respect to the teleost optic lobe (i.e., the absence of a torus longitudinalis; the lack of a stratum fibrosum marginale; the modest size of the stratum fibrosum profundum; the paucity of neurons in the stratum fibrosum et griseum superficiale; and the ill-defined separation of the layers of the afferent and efferent fibers), the optic tectum of Calamoichthys resembles the mesotectal type characteristic of teleosts, anurans and reptiles. It exhibits higher degree of organization than the optic tectum of the Chondrostei.  相似文献   

3.
Summary The retinal projections in the tegu lizard were traced using degeneration-silver methods. Bilateral projections were found to the dorsolateral geniculate and the posterodorsal nuclei. Unilateral, crossed projections were traced to the suprachiasmatic nucleus, the ventrolateral geniculate nucleus, the mesencephalic lentiform nucleus, nucleus geniculatus praetectalis, the ectomammillary nucleus, and the optic tectum. Some of these connections are distinctly different from those reported in other reptiles and suggest that important interspecific variations occur among reptiles.  相似文献   

4.
The cellular populations present in dorsomedial cortex in the snakes Constrictor constrictor, Natrix sipendon and Thamnophis sirtalis are described at the light microscopic level using Nissl and Golgi preparations as well as at the ultrastructural level. This area plays a central role in cortical organization in snakes by participating in major commissural and association projections. Systematic analyses of Golgi preparations indicate that five populations of neurons are present in dorsomedial area and have a preferential laminar distribution. Layer 1 stellate cells have somata positioned in the center of the outermost cortical layer, layer 1. Their dendrites are confined to this layer. Double pyramidal cells have their somata loosely packed in layer 2. Their dendrites bear a moderate population of spines, ascending through layer 1 to the pial surface and descending partially through layer 3. Some double pyramidal cells have somata displaced downwards into the upper third of layer 3. These neurons closely resemble the layer 2 double pyramidal cells. Layer 3 stellate cells have somata positioned in the middle third of layer 3. Their dendrites extend in all directions throughout layer 3 and through layer 2 into layer 1. Finally, horizontal cells have their somata positioned deep in layer 3, near the ventricle, and dendrites aligned concentric with the ventricle. Comparison of the organization of the known afferents to dorsomedial area with the distribution of the five cell types suggests that the laminations of both afferent fibres and dorsomedial neurons places specific neuronal populations in synaptic contact with specific sets of afferents.  相似文献   

5.
Using immunohistochemistry and a tracer technique we investigated the distribution in the optic tectum of turtles (Emys orbicularis and Testudo horsfieldi) of the calcium-binding proteins (CaBPr) parvalbumin (PV), calbindin (CB) and calretinin (CR) before and after labeling of the nucleus rotundus (Rot) with horseradish peroxidase. The optic tectum activity of the cytochrome oxidase (CO) was studied in parallel. In the principal link of the tectofugal visual pathway (central gray layer, SGC) in both chelonian species, the sparse PV-ir as well as CB- and CR-ir neurons were found significantly varying both in number and the intensity of immunoreactivity of their bodies and dendrites. In contrast, the superficial (SGFS) and deeper periventricular (SGP) tectal layers comprised numerous cells immunoreactive to all three CaBPr in different proportions. Only few retrogradely labeled tectorotundal SGC neurons expressed PV, CB or CR. The very large PV-ir neurons in SGC and SAC were not retrogradely labeled; morphologically they matched the efferent neurons with descending projections. SGC neurons of two chelonian species differed in the level of CO activity. Intense immunoreactivity to all three CaBPr and high CO activity were detected in both species in SGFS neuropil with some differences in sublaminar distribution patterns. The peculiarities of the CaBPr and CO activity distribution patterns in different segments of SGC neurons are discussed as related to the laminar organization of the turtle tectum and its retinal innervation. It is suggested that in the projection tectorotundal SGC neurons the CaBPr are concentrated mainly in their distal dendrites that contact retinal afferents in the superficial retinorecipient tectal layer.  相似文献   

6.
Light and electronmicroscopic studies have been made on retinal structures in the lamprey labeled by horseradish peroxidase injected into the peripheral end of the cut optic nerve or to the midbrain tectum. On total retinal preparations, labeled axons were revealed together with dendrites and ganglionic cell bodies, as well as branching (presumably retinopetal) fibers, fine endings of which come closely to the labeled dendrites of the ganglionic cells. Electron microscopic data indicate that the labeled terminations of afferent fibers from synapses with both labeled and unlabeled dendrites, as well as with unlabeled neuronal bodies. It is concluded that centrifugal fibers in lamprey retina form contacts with the bodies and dendrites of the amacrine cells and dendrites of the ganglionic cells. Results of intracellular registration of responses of various retinal elements to the electrical stimulation of the optic nerve support this conclusion.  相似文献   

7.
用光学显微镜对北草蜥(Takydromus septentrionalis)中脑视叶组织学结构进行了观察。视叶分为背侧的顶盖和腹侧的被盖,两者无明显界限。顶盖处灰质和白质交替排列。由表及里,可分为分子层、外灰质层、浅白质层、中灰质层、中白质层、深灰质层、深白质层和室管膜层。被盖处细胞层次不明显。在视叶的前部有横行的纤维将左右视叶联系起来。左右视叶室与中脑水管以及两视叶间的纵沟在视叶的中、后部相通。同时将北草蜥的中脑与其它低等脊椎动物进行了比较,推测北草蜥在进化上处于较低等地位。  相似文献   

8.
The cytoarchitecture and neuromorphology of the torus semicircularis in the tokay gecko, Gekko gecko, were examined in Nissl-stained, fiber-stained, and Golgi-impregnated tissues. From a superficial position, the torus semicircularis extends rostrally under the caudal half of the optic tectum. Caudally, the two tori abut upon one another; rostrally, they diverge. The torus semicircularis consists of central, laminar, and superficial nuclei. The central nucleus consists of fusiform, spherical and triangular neurons. Their dendrites are highly branched, with numerous dendritic spines, and are oriented mediolaterally, dorsoventrally, and rostrocaudally. Fusiform and spherical neurons display two dendritic patterns: “single axis,” ramifying in one axis, and “dual axis,” exhibiting higher-order branches perpendicular to the primary dendrites. Triangular neurons exhibit a “radiate” dendritic pattern. In the rostral half of the torus semicircularis, the laminar nucleus caps the central nucleus. The laminar nucleus encircles the central nucleus in the caudal torus semicircularis. The neurons of the laminar nucleus have dendritic arrays oriented parallel to the border of the central nucleus. These dendrites exhibit a paucity of dendritic spines and higher-order branches. Fusiform and spherical neurons exhibit “single axis” and “dual axis” dendritic patterns. Triangular neurons display “radiate” patterns. The caudal superficial nucleus lies dorsal and dorsolateral to the central nucleus. The superficial nucleus is sparsely populated by small fusiform and spherical neurons with moderately branched dendrites and moderate numbers of dendritic spines. These neurons display “single axis” (fusiform neurons) as well as “dual axis” and “radiate” (spherical neurons) dendritic patterns. They are oriented either parallel to or perpendicular to the boundary of the laminar nucleus.  相似文献   

9.
10.
The transport of RNA from the ganglion cell bodies within the retina to the contralateral optic tectum has been studied in the chick following intraocular injection of radioactive uridine. By tracing the appearance of labeled RNA at the proximal end of the optic nerve as it leaves the eyeball and comparing this to the time of arrival of RNA within the optic tectum, the migratory velocity of axonal RNA has been calculated to be around 12 mm per day. The continuation of RNA migration to the optic tectum in the presence of intracerebrally injected actinomycin-D but not in the presence of the intraocularly injected drug, suggests a retinal site of synthesis of the excess RNA found in the tectum innervated by the injected eye. A study of the rate of disppearance of radioactivity of the transported RNA in the optic lobes, suggested that this RNA turns over more rapidly than the bulk of tectal RNA. The destination of migrating RNA within the optic tectum has been autoradiographically examined. Most radioactive RNA is found in the outer tectal layers in which are found the afferent fibers of the optic tract and most of their synaptic terminations. Label is not confined to these areas however but is also present in the deeper layers of the optic tectum which are not known to contain any primary synapses of the axons from retinal ganglion cells.  相似文献   

11.
Data on distribution of biologically active substances in the turtle optic tectum are compared with results of similar experiments on other reptilian as well as on avian species. In two turtle species (Testudo horsfield and Emys orbicularis), immunoreactivity to monoamines (5-HT and TH), NPY, as well as NADPH-d activity were similarly distributed in neuropil of the SGFS retinorecipient part and in that of the SGP/SAP periventricular layers. Immunoreactivity to neuropeptides SP and m-Enk was maximal in neuropil of the SGFS non-retinorecipient part. The periventricular layers were characterized by the abundant radial SP- and mENK-ir as well as the NADPH-d-positive neurons. Diffusely dispersed ChAT-ir elements and many ir fibers perpenducilar to the tectal surface were observed in the SGFS retinorecipient part; the SGFS non-retinorecipient part contained a dense plexus of thick ir fibers and diffusely distributed ir terminals. The GABA ir cells were the most numerous in the tectum; they were spread in all tectal layers. Thus, various biologically active substance located in superficial retinorecipient tectal sublayers could affect processing and transmission of information via ascending dendrites of neurons in deeper layers. The cells containing SP, m-Enk, and NADPH-d had laminar organization in SGP; via the system of ascending and descending axons, they are able to affect other structures within and outside of the optic tectum. Putative sources of tectal modulatory innervation are discussed. In all studied reptilian and avian species, the principal similarity is revealed in the neurochemical organization. Some differences might be explained by the level of tectal differentiation due to factors of phylogenetic evolution and/or adaptive specialization.  相似文献   

12.
Data on distribution of biologically active substances in the turtle optic tectum are compared with results of similar experiments on other reptilian as well as on avian species. In two turtle species (Testudo horsfield and Emys orbicularis), immunoreactivity to monoamines (5-HT and TH), NPY, as well as NADPH-d activity were similarly distributed in neuropil of the SGFS retinorecipient part and in that of the SGP/SAP periventricular layers. Immunoreactivity to neuropeptides SP and m-Enk was maximal in neuropil of the SGFS non-retinorecipient part. The periventricular layers were characterized by the abundant radial SP- and mENK-ir as well as the NADPH-d-positive neurons. Diffusely dispersed ChAT-ir elements and many ir fibers perpenducilar to the tectal surface were observed in the SGFS retinorecipient part; the SGFS non-retinorecipient part contained a dense plexus of thick ir fibers and diffusely distributed ir terminals. The GABA ir cells were the most numerous in the tectum; they were spread in all tectal layers. Thus, various biologically active substances located in superficial retinorecipient tectal sublayers could affect processing and transmission of information via ascending dendrites of neurons in deeper layers. The cells containing SP, m-Enk, and NADPH-d had laminar organization in SGP; via the system of ascending and descending axons, they are able to affect other structures within and outside of the optic tectum. Putative sources of tectal modulatory innervation are discussed. In all studied reptilian and avian species, the principal similarity is revealed in the neurochemical organization. Some differences might be explained by the level of tectal differentiation due to factors of phylogenetic evolution and/or adaptive specialization.  相似文献   

13.
The laminated structure of the optic tectum is formed by radial and tangential cell migration during development. Studies of developing chick optic tectum have revealed two streams of tangential cell migration in the middle and superficial layers, which have distinctive origins, migratory paths, modes of migration, and destinations. We will review the process of the two types of tangential migrations, in order to elucidate their roles in the formation of the optic tectum layers.  相似文献   

14.
Summary Acetylcholinesterase localization has been studied by electron microscopic histochemistry in the quail optic tectum. Ultrastructural analysis reveals that the different neuronal types in the tectum possess the metabolic pathways for AChE synthesis to different degrees. From the site of synthesis in cell bodies the enzyme spreads towards areas of neuropil. In the neuropil of AChE-rich areas a balance seems to exist between enzyme stored in dendrites (and sometimes axon terminals) and enzyme released into the extracellular spaces. Precise identification of cholinergic synapses by means of AChE localization is in most cases impossible, due to extensive spread of the enzyme through the extracellular compartments of the neuropil.Unilateral ocular ablation causes disappearance of the stratum opticum and decrease in thickness of the superficial tectal layers in the contralateral optic tectum, but only minor modifications in AChE localization. This finding is in agreement with biochemical results which show equivalence of the relative concentration of AChE in the right and left optic tectum 1 or 2 months after ablation of the right eye. The experimental evidence suggests that cholinergic mechanisms are not related to the discharge of retinal afferents on receptive tectal neurons, but more likely to intrinsic neural circuits which might be involved in the modulation of tectal activity.  相似文献   

15.
采用HE染色和Holmes银染法对蟾蜍中脑的显微结构进行了研究.中脑背侧,视叶可分为顶盖和被盖,顶盖从外侧到内侧依次分为:带状层、外灰质层、浅白质层、中灰质层、中白质层、深灰质层、深白质层和中央灰质.被盖前端分层与顶盖相同,后端分层不明显.中脑腹侧包括被盖和大脑脚,HE染色和Holmes银染法显示,大脑脚从外向内颜色由浅变深,存在大量纵向神经纤维束,两脚底分界处有横向交错的神经纤维.被盖外侧细胞不分层,聚集形成核团.被盖内侧,细胞和纤维以中脑水管为中心,呈同心圆环分8层.通过比较蟾蜍中脑背腹差异程度,了解背腹功能不同.同时对中华蟾蜍中脑同其他脊椎动物的进行了比较.  相似文献   

16.
R Bianchi  M Gioia 《Acta anatomica》1990,139(4):349-356
A morphoquantitative study was carried out to provide detailed information regarding the cytoarchitecture and neuronal morphology of the nucleus of Darkschewitsch (ND) of man. The neuronal population showed heterogeneity of shape and size of the nerve cell bodies. Small and medium-sized neurons appeared scattered in a wide neuropil. In the Golgi material, two types of neurons were identified: multipolar and fusiform cells. Multipolar cells, which were the most numerous (77%), had 3-5 dendrites giving off primary bifurcations at a short distance from the nerve cell body. Sometimes dendrites and axons were seen to spread outside the ND. The fusiform cells had 1-2 dendrites emerging from the opposite poles of the elongated nerve cell bodies. The dendrites tended to run unbranched for long distances in the section plane before dichotomizing. The dendrites and axons of the fusiform cells always lay inside the ND. The cytoarchitectural features of the ND corresponded to the characters of the reticular formation so that the ND of man could be considered to be a typical reticular nucleus inside the central gray matter. The prevailing presence of multipolar neurons whose processes often spread outside the ND could suggest that the ND is a mainly projective nucleus.  相似文献   

17.
Layer 10 neurons of the chick tectum were morphologically investigated. The layer 10 neurons displayed heterogeneous immunoreactivities to calcium-binding proteins (CaBPs). Calbindin (CB)-immunoreactive (ir) neurons had pyramidal or round somata, primarily found in layers 5, 9, and 13. Parvalbumin (PV)-ir neurons were of various shapes with small to large somata (109.7 ± 48.6 μm2) that were located mainly in layers 4 and 10. Calretinin (CR)-ir neurons had small to middle-sized somata (79.3 ± 9.7 μm2) located primarily in layers 10 and 13, and most of them were similar to typical radial cells in size and shape. Two distinct types of neurons that projected to the nucleus geniculatus lateralis, pars ventralis (GLv) and ventral thalamus were demonstrated in layer 10. Type 1 cells had small to middle-sized somata (74.3 ± 33 μm2), and each cell had a single apical dendrite that ramified into bush-like branches in layer 7. These cells corresponded to CR-ir neurons and radial cells in size and shape. Type 2 cells had larger somata (124.7 ± 52.6 μm2), and their shapes were pyramidal, polygonal, or oval. They had multiple obliquely ascending dendrites that ramified into bush-like branches in layer 7. These cells often appeared similar to PV-ir neurons.  相似文献   

18.
Area 5 of the cat cortex was studied by Nissl's method and by Golgi's chromate-silver impregnation method. Its typical six-layered structure with well-developed layers of pyramidal cells was revealed. The characteristic features of area 5 are: predominance of pyramidal cells in layers II–III and the presence of large forms (40×26 µ) among them (in layer III); giant pyramidal neurons (70×23 µ) arranged singly or nidally in layer V; large (diameter 25–30 µ) and giant (diameter 40–45 µ) stellate cells with radial dendrites, arranged singly or in groups in layers V–VI; infrequent efferent fusiform neurons (40×20 µ) in layers V–VI. Stellate cells connecting pyramidal neurons in the same or in different layers were found in layers II–VI. Some stellate cells in layers II–III form long horizontal connections within area 5. Interneuronal connections are effected by axosomatic and axodendritic terminals, the latter being more numerous; Dendrodendritic and axoaxonal synapses are less common.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 1, pp. 35–42, January–February, 1979.  相似文献   

19.
The cyto- and mieloarchitecture of the first auditory cortex (A I) was studied in the cat. The cortical layers II, III and IV are very densely populated by relatively uniform, round or stellate cells with 20 to 30 micro perikaryal diameter. The separation between these three layers, which is not possible in Nissl stained sections, becomes visible in 1 to 3 micro thick sections of plastic embedded material. nerve cells in layer II are randomly disposed, whilst they form in laver III loose rounded cellular groups, and in layer IV vertical cylinders which have 50 to 60 micro in outside diameter and a cell poor centre. These cylinders are best visible in 100 micro thick Nissl preparations, cut parallel to the pial surface. The cylinders may extend into layer V, which is comparatively cell poor. The VIth layer contains numerous round, stellate or fusiform cells with 20 to 30 micro in diameter. The IIIrd and Vth layers have few pyramidal perikarya which are small. Large or giant pyramidal cells are not found in A I. The overall thickness of the cortex in the convexity of A I is 2,000 micro, measured in sections of plastic blocks. The thickness of the 6 layers is 200 to 250 micro for layer I; 300 micro for layer II; 300 micro for layer III; 300 to 400, for layer IV; 350 micro for layer V; and 400 micro for layer VI. In preparations stained for myelin sheats A I is characterized by the presence of a very dense plexus of fibres running in all directions in the IVth, Vth anti VIth layers. These plexus obscurs the radiations of Meynert, giving a characteristic appearance to A I, since these radiations are prominent in the neighbouring cortical areas. In preliminary studies of Golgi rapid preparations of A I the cell types commonly present in others cortical areas were found. Pyramidal cells have small perikarya, and very long (600 micro) horizontal basal dendrites. Modified pyramidal cells (star pyramids) are the main cellular element in layer II and constitute one of the main sources of efferent fibres of A I. Several types of stellate cells were found, including a particular cell type, found very often in the IVth layer, with a very long horizontal axon. The specific thalamic afferents were identified as fibres with 5 or 8 micro in diameter, which run obliquely and sinuously through the VIth and Vth layers of A I. These fibres give off many branches with 1 to 2 micro in diameter, which pass to the IVth layer where they give off very thin sinuous branches, ending in small terminal knobs. The ramification of one of these fibres may spread horizontally over 800 micros, at the level of the IVth layer.  相似文献   

20.
Adult neurogenesis attracts broad attention as a possible cure for neurological disorders. However, its regulatory mechanism is still unclear. Therefore, they have been studying the cell proliferation mechanisms of neural stem cells (NSCs) using zebrafish, which have high regenerative potential in the adult brain. The presence of neuroepithelial‐type NSCs in the optic tectum of adult zebrafish has been previously reported. In the present study, it was first confirmed that NSCs in the optic tectum decrease or increase in proportion to projection of the optic nerves from the retina. At 4 days after optic nerve crush (ONC), BrdU‐positive cells decreased in the optic tectum's operation side. In contrast, at 3 weeks after ONC, BrdU‐positive cells increased in the optic tectum's operation side. To study the regulatory mechanisms, they focused on the BDNF/TrkB system as a regulatory factor in the ONC model. It was found that bdnf was mainly expressed in the periventricular gray zone (PGZ) of the optic tectum by using in situ hybridization. Interestingly, expression level of bdnf significantly decreased in the optic tectum at 4 days after ONC, and its expression level tended to increase at 3 weeks after ONC. They conducted rescue experiments using a TrkB agonist and confirmed that decrease of NSC proliferation in the optic tectum by ONC was rescued by TrkB signal activation, suggesting stimuli‐dependent regulation of NSC proliferation in the optic tectum of adult zebrafish. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号